CLASSIFICATION OF FINITE GROUPS ACCORDING TO THE NUMBER OF CONJUGACY CLASSES II

BY

ANTONIO VERA LÓPEZ[®] AND JUAN VERA LÓPEZ[®] *"Departamento de Matemdticas, Facultad de Ciencias, Universidad del Pals Vasco, Apartado 644, Bilbao, Spain ; and "Instituto Nacional de Bachillerato, Cura Valera, Huercal-Overa, Almeria, Spain*

ABSTRACT

In the following, G denotes a finite group, $r(G)$ the number of conjugacy classes of G, $\beta(G)$ the number of minimal normal subgroups of G and $\alpha(G)$ the number of conjugate classes of G not contained in the socle $S(G)$. Let $\Phi_i = \{G \mid \beta(G) = r(G) - i\}$. In this paper, the family $\Phi_{i,j}$ is classified. In addition, from a simple inspection of the groups with $r(G) = b$ conjugate classes that appear in $U_{i=1}^{1} \Phi_i$, we obtain all finite groups satisfying one of the following conditions: (1) $r(G) = 12$; (2) $r(G) = 13$ and $\beta(G) > 1$; ...; (9) $r(G) = 20$ and $\beta(G) > 8$; (10) $r(G) = n$ and $\beta(G) = n - a$ with $1 \le a \le 11$, for each integer $n \ge 21$. Also, we obtain all finite groups G with $13 \le r(G) \le 20$, $\beta(G) \le r(G)-12$, and satisfying one of the following conditions: (i) $0 \le$ $\alpha(G) \leq 4$; (ii) $5 \leq \alpha(G) \leq 10$ and $S(G)$ solvable.

1. Introduction

In this work, G will denote a finite group, $r = r(G)$ the number of conjugacy classes, $\beta(G)$ the number of minimal normal subgroups of G, and $\alpha(G)$ the number of conjugate classes of G not contained in the socle *S(G).*

The possibility of classifying finite groups according to the number $r(G)$ and to some properties of their conjugacy classes was suggested in [2].

The classification of all finite groups with $r(G) \leq 9$ was carried out in a series of papers by G. A. Miller and W. Burnside $(r(G) \le 5, cf. [2]$ Note A, 1910), D. I. Sigley *(r(G)=* 6, [21], 1935), J. Poland *(r(G)=* 7, [19], 1966), L. F. Kosvintsev $(r(G) = 8, [12], 1974)$ and V. A. Odincov, A. I. Starostin $(r(G) = 9, [17], 1976)$. In 1978, A. G. Aleksandrov and K. A. Komissarcik ([1]) found all finite simple groups with $r(G) \leq 12$.

Received February 24, 1986

In [25] we approached the problem of classifying finite groups according to the number $r(G)$ through the classification of the families $\Phi_i = \{G \mid \beta(G) =$ $r(G)-i$ for small values of the natural number *i*. The families Φ_i , *i* = 1,2,..., 10 are classified and as an immediate corollary, the previously known classification of finite groups with $r(G) \leq 9$ is found, as well as that of those finite groups satisfying one of the following conditions:

- (i) *r(G)=* 10,
- (iii) $r(G) = 11$,

(iii)
$$
r(G) = n
$$
 and $\beta(G) = n - a$ with $1 \le a \le 10$, for each integer $n \ge 12$.

In this paper, all groups G with $\beta(G) = r(G) - 11$ are classified. Using the results of [25], we obtain as an immediate corollary all finite groups satisfying one of the following conditions:

(1) *r(G)=* 12,

- (2) $r(G) = 13$ and $\beta(G) > 1$,
- (3) $r(G) = 14$ and $\beta(G) > 2$,

(9) $r(G) = 20$ and $\beta(G) > 8$,

(10) $r(G) = n$ and $\beta(G) = n - a$ with $1 \le a \le 11$, for each integer $n \ge 21$.

Moreover, we obtain all finite groups G with $13 \le r(G) \le 20$ and $\beta(G) \le$ $r(G)$ – 12, and satisfying one of the following conditions:

(a) $0 \le \alpha(G) \le 4$,

(b) $5 \le \alpha(G) \le 10$ and $S(G)$ solvable.

We shall follow closely the notation introduced in [25]. If $\emptyset \neq S \subseteq G$, we define

$$
r_G(S) = |\{ \operatorname{Cl}_G(g) | \operatorname{Cl}_G(g) \cap S \neq \varnothing \}|.
$$

In addition, if S is a normal set in G, we define $\Delta_s^G = (|C_G(x_1)|, \ldots, |C_G(x_i)|)$, if $|C_G(x_1)| \geq \cdots \geq |C_G(x_i)|$ and $S = Cl_G(x_1) \cup \cdots \cup Cl_G(x_i)$. In particular, if $S(G)$ denotes the socle of G and $S_0 = \bigcup_{g \in G} (xS(G))^g$, then we write $\Delta_x = \Delta_x^G = \Delta_{s_0}^G$. Finally, in case $S = G$, we set $\Delta S = \Delta_G$.

Also, $\langle a \rangle = C_m$ denotes a cyclic group of order *m* generated by a, $\hat{\Sigma}_m^{(i)}$ denotes the two non-isomorphic proper coverings of Σ_m by C_2 , and

$$
M_{2^n} = \langle a, b \mid a^{2^{n-1}} = 1 = b^2, a^b = a^{1+2^{n-1}} \rangle
$$

denotes the ordinary non-abelian group of order 2".

Now, the finite groups satisfying conditions (1) – (9) are described in Tables 1–9. These tables list the *r*-tuples Δ_G and the structures of $G/S(G)$.

\boldsymbol{G}	Δ_G	G/S(G)	Reference
$C_2 \times C_6$	12 $(12, \ldots, 12)$	1	(2.17) [25]
C_{12}	$(12, \ldots, 12)$	C ₂	(2.17) [25]
$C_3\times_\lambda C_8$	$(24, \ldots, 24, 12, \ldots, 12, 8, \ldots, 8)$	C_{4}	(4.2) [25]
$C_4 \times \Sigma_3$	$(24, \ldots, 24, 12, \ldots, 12, 8, \ldots, 8)$	C_2^2	(4.2) $[25]$
$C_2^2 \times \Sigma_3$	$(24, \ldots, 24, 12, \ldots, 12, 8, \ldots, 8)$	C ₂	(4.1) [25]
$C_2 \times DC_3$	$(24, \ldots, 24, 12, \ldots, 12, 8, \ldots, 8)$	C ₂	(4.1) $[25]$
$C_3 \times D_{10}$	$(30, 30, 30, 15, \ldots, 15, 6, 6, 6)$	C ₂	(2.20) [25]
$C_2\times (C_9\times_{f} C_2)$	$(36, 36, 18, \ldots, 18, 4, 4)$	Σ_{3}	(4.2) $[25]$
$C_9 \times_{\lambda} C_4$	$(36, 36, 18, \ldots, 18, 4, 4)$	Σ_{3}	(4.2) [25]
$C_3 \times A_4$	$(36, 36, 36, 12, 12, 12, 9, \ldots, 9)$	C_{3}	(4.2) $[25]$
$C_3^2\times_{\lambda} C_4$	$(36, 36, 18, \ldots, 18, 4, 4)$	C_{2}	(2.19) $[25]$
$C_2^2\times_\lambda C_9$	$(36, 36, 36, 12, 12, 12, 9, \ldots, 9)$	C_{3}	(4.2) [25]
$(C_3 \times C_7) \times_C C_2$	$(42, 21, \ldots, 21, 2)$	C_{2}	(2.18) [25]
$C_3 \times_A Q_{16}$	$(48, 48, 24, 24, 24, 12, \ldots, 12, 8, 8, 4)$	$D_{\rm s}$	(4.2) [25]
$C_3\times_{\lambda}D_{16}$	$(48, 48, 48, 24, 24, 12, \ldots, 12, 8, 8, 4)$	\boldsymbol{D}_3	(4.2) [25]
$C_3 \times_A SD_{16}$	$(48, 48, 48, 24, 24, 12, \ldots, 12, 8, 8, 4)$	D_8	(4.2) [25]
$\Sigma_3 \times D_{10}$	$(60, 30, 30, 30, 20, 15, 15, 12, 10, 10, 6, 4)$	C_2^2	(4.2) [25]
$C_3^2\times_\lambda C_8$	$(72, 72, 18, \ldots, 18, 8, \ldots, 8)$	C ₄	(4.2) [25]
$\Sigma_3 \times A_4$	$(72, 36, 24, 24, 18, 18, 12, 9, 9, 8, 6, 6)$	C_6	(4.2) [25]
$C_2\times (C_3^2\times_f C_4)$	$(72, 72, 18, \ldots, 18, 8, \ldots, 8)$	C_{4}	(4.2) [25]
$(C_2^2 \times C_7) \times_C C_3$	$(84, 28, \ldots, 28, 3, 3)$	C_{3}	(2.19) [25]
$(C_2^2 \times Q_8) \times_{\lambda} C_3$	$(96, 96, 32, 32, 16, \ldots, 16, 6, \ldots, 6)$	A_{4}	(4.2) [25]

TABLE 1 The finite groups with exactly twelve conjugacy classes

(i) The finite groups satisfying $r(G) = 13$ and $\beta(G) > 1$				
G	Δ_G	G/S(G)	Reference	
$C_5\times_{\lambda_1}D_{\rm B}$	$(40, 40, 20, \ldots, 20, 4, 4)$	C_2^2	(4.2) [25]	
$C_5\times_{\lambda_2}D_8$	$(40, 40, 20, \ldots, 20, 4, 4)$	C^2	(4.2) [25]	
$C_s \times_{\lambda} O_s$	$(40, 40, 20, \ldots, 20, 4, 4)$	C_2^2	(4.2) [25]	
$C_5^2\times C_4$	$(100, 50, 50, 25, \ldots, 25, 20, 10, 10, 4, 4)$	C.	(4.2) [25]	
$C_2^2\times_\lambda(C_1,\times,C_2)$	$(120, 60, 60, 40, 20, 20, 15, \ldots, 15, 4, 4)$	Σ_3	(4.2) [25]	

TABLE 2

(ii) The finite groups satisfying $r(G) = 13$, $\beta(G) = 1$ and $0 \le \alpha(G) \le 4$

(iii) The finite groups satisfying $r(G) = 13$, $\beta(G) = 1, 5 \le \alpha(G) \le 10$ and $S(G)$ solvable

G	$\Delta_{\bm{G}}$	G/S(G)	Reference
$C_2 \times D_{16}$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	$D_{\rm s}$	(1.16)
$C_2 \times SD_{16}$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	D_8	(1.16)
$C_2 \times Q_{16}$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	D_{κ}	(1.16)
$(C_8 \times C_2) \times_{\lambda} C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	D_8	(1.16)
$(C_8 \times C_2) \cdot C_4$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	$D_{\rm s}$	(1.16)
$C_8 \times_{\lambda_1} C_4$ =	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	D_{8}	(1.16)
$C_8\times_{\lambda_2} C_4$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	D_{8}	(1.16)
$C_2^4 \times_A C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$C_4^2\times_{\lambda_1} C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$C^2_4\times_{\scriptscriptstyle \lambda_2} C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$C^2_4 \cdot C_4$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
C^2_4 C_4	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$(C_4 \times C_2^2) \times_{\lambda_1} C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$(C_4 \times C_2^2) \times_{\lambda_2} C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$(C_4 \times C_2^2) \cdot C_4$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$C_2 \times SL(2,3)$	$(48, \ldots, 48, 12, \ldots, 12, 8, 8)$	A ₄	(1.14)
$C_5^2\times_C C_2$	$(50, 25, \ldots, 25, 2)$	C ₂	(2.18) [25]
$C_7^2\times_{f_2} C_6$	$(294, 49, \ldots, 49, 6, \ldots, 6)$	C_{6}	(4.2) [25]

TABLE 3 (i) The finite groups satisfying $r(G) = 14$ and $B(G) > 2$

TABLE 3 (contd.)

α and α is a properties in α and α and β are α			
	Δ_G		$G/S(G)$ Reference
$C_3^3\times_{f} C_2$	$(54, 27, \ldots, 27, 2)$	C ₂	(2.18) [25]
$(C_3 \times C_9) \times_C C_2$	$(54, 27, \ldots, 27, 2)$	Σ	(1.14)
$C_3^4\times_{f} Q_8$	$(648, 81, \ldots, 81, 8, 4, 4, 4)$	Q_{8}	(4.1) [25]

TABLE 4 (i) The finite groups satisfying $r(G) = 15$ and $\beta(G) > 3$

(iii) The finite groups satisfying $r(G) = 15$, $\beta(G) \le 3$, $5 \le \alpha(G) \le 10$ and $S(G)$ solvable

G	Δ_G	G/S(G)	Reference
$C_3^3\times_{\lambda} C_2^2$	$(108, 54, 54, 54, 27, \ldots, 27, 12, 12, 12, 6, 6, 6)$	C^2	(4.2) [25]
$(C_3 \times C_7) \times_{\lambda} C_6$	$(126, 63, 42, 42, 42, 21, 21, 18, 18, 14, 14, 9, 9, 6, 6)$	$C_{\rm s}$	(4.2) [25]
$C_1^2 \times_{\lambda} D_{16}$	$(144, 144, 36, \ldots, 36, 12, \ldots, 12, 8, 8, 8)$	D,	(4.2) [25]
$C_3^2 \times \Omega_{16}$	$(144, 144, 36, \ldots, 36, 12, \ldots, 12, 8, 8, 8)$	$\mathbf{D}_{\mathbf{R}}$	(4.2) [25]
$C_3^2\times_A Q_{16}$	$(144, 144, 36, \ldots, 36, 12, \ldots, 12, 8, 8, 8)$	$D_{\rm s}$	(4.2) [25]
$C^3 \times D^8$	$(216, 108, 54, 54, 27, 27, 24, 12, \ldots, 12, 6, 6)$	$D_{\rm s}$	(4.2) [25]
$C_3^3\times$, C_8	$(216, 108, 27, 27, 27, 24, 24, 24, 12, 12, 12, 8, \ldots, 8)$	$C_{\rm a}$	(1.14)
$(C_3 \times C_{13}) \times_{\lambda} C_6$	$(234, 117, 39, \ldots, 39, 18, 18, 9, 9, 6, 6, 6)$	c.	(4.2) [25]
$(C_5 \times C_3^2) \times_{\lambda} C_8$	$(360, 90, 45, \ldots, 45, 40, 10, 8, \ldots, 8)$	C_{κ}	(4.8) [25]
$C_{51} \times C_{10}$	$(510, 51, \ldots, 51, 10, \ldots, 10)$	C_{10}	(4.10) [25]

TABLE 4 (contd.)

TABLE 5 (i) The finite groups satisfying $r(G) = 16$ and $\beta(G) > 4$

	Δа		$G/S(G)$ Reference
C_2^4	16 $(16, \ldots, 16)$		(1.16)
$C_2^2 \times C_4$	- 16 $(16, \ldots, 16)$	\mathbb{C}^2	(1.16)
$C_2\times (C_2^4\times_f C_3)$	- 10 $(96, 96, 16, \ldots, 16, 6, \ldots, 6)$	C.	(4.1) [25]

TABLE 5 (contd.)

	Ø		
(ii) The finite groups satisfying $r(G) = 17$, $\beta(G) \le 5$ and $0 \le \alpha(G) \le 4$			
G	Δ_G	G/S(G)	Reference
C_{17}	$(17, \ldots, 17)$		(1.16)
$C_{31} \times C_2$	$(62, 31, \ldots, 31, 2)$	C ₂	(2.18) [25]
$C_{43} \times C_{3}$	$(129, 43, \ldots, 43, 3, 3)$	\mathcal{C}_{1}	(2.19) [25]
$C_{61} \times C_5$	$(305, 61, \ldots, 61, 5, 5, 5, 5)$	C_{5}	(4.1) [25]
$(A_5 \times C_5) \times_{\lambda} C_2$	$(600, 300, 300, 40, 30, 25, \ldots, 25, 20, 20, 15, 15, 12, 6, 4)$	\mathcal{C}	(2.20) [25]

TABLE 6 (i) The finite groups satisfying $r(G) = 17$ and $\beta(G) > 5$

(iii) The finite groups satisfying $r(G) = 17$, $\beta(G) \le 5$, $5 \le \alpha(G) \le 10$ and $S(G)$ solvable

(i) The finite groups satisfying $r(G) = 18$ and $\beta(G) > 6$			
G	Δ_{G}	$G/S(G)$ Reference	
$C_3^*\times$, C_8	$(648, 81, \ldots, 81, 8, \ldots, 8)$	$C_{\rm s}$	(4.8) [25]
	(ii) The finite groups satisfying $r(G) = 18$, $\beta(G) \le 6$ and $0 \le \alpha(G) \le 4$		
G	Δ_G		$G/S(G)$ Reference
$C_2 \times C_3^2$	$(18, \ldots, 18)$	$\mathbf{1}$	(1.16)
$C_3\times (C_3\times_C C_2)$	$(54, 54, 54, 27, \ldots, 27, 6, 6, 6)$	C ₂	(2.20) [25]
$(C_3 \times C_5) \times_{\lambda} C_4$	$(60, 60, 30, \ldots, 30, 4, 4)$	C ₂	(2.19) [25]
$C_2 \times ((C_3 \times C_5) \times (C_2))$	$(60, 60, 30, \ldots, 30, 4, 4)$	C ₂	(2.19) [25]
$(C_3 \times C_1) \times C_2$	$(66, 33, \ldots, 33, 2)$	C ₂	(2.18) [25]
$C_2\times (C_1, \times, C_3)$	$(114, 114, 38, \ldots, 38, 6, 6, 6, 6)$	C_{3}	(4.1) [25]
$(C_3 \times C_{17}) \times_{\lambda} C_4$	$(204, 102, 51, \ldots, 51, 12, 6, 4, 4)$	C_{4}	(4.1) [25]

TABLE 7 (i) The finite groups satisfying $r(G) = 18$ and $\beta(G) > 6$

(iii) The finite groups satisfying $r(G) = 18$, $\beta(G) \le 6$, $5 \le \alpha(G) \le 10$ and $S(G)$ solvable

(i) The finite groups satisfying $r(G) = 19$ and $\beta(G) > 7$				
	ΔG	G/S(G)	Reference	
$C_7^2\times_b C_3$	$(147, 49, \ldots, 49, 3, 3)$	C_{3}	(2.19) [25]	

TABLE 8

(iii) The finite groups satisfying $r(G) = 19$, $\beta(G) \le 7$, $5 \le \alpha(G) \le 10$ and $S(G)$ solvable

	Ø		
	(ii) The finite groups satisfying $r(G) = 20$, $\beta(G) \leq 8$ and $0 \leq \alpha(G) \leq 4$		
G	Δ_G	G/S(G)	Reference
$C_2^2 \times D_{14}$	$(56, \ldots, 56, 28, \ldots, 28, 8, \ldots, 8)$	\mathcal{C}_{2}	(4.1) [25]
$C_2\times (C_7\times_{\lambda} C_4)$	$(56, \ldots, 56, 28, \ldots, 28, 8, \ldots, 8)$	C,	(4.1) $[25]$
$C_1 \times C_4$	$(68, 68, 34, \ldots, 34, 4, 4)$	C ₂	(2.19) [25]
$C_2\times (C_1\times_C C_2)$	$(68, 68, 34, \ldots, 34, 4, 4)$	$\mathbb{C}^{\mathbb{Z}}$	(2.19) [25]
$C_v\times C_2$	$(74, 37, \ldots, 37, 2)$	C ₂	(2.18) [25]
$(C_2^2 \times C_{13}) \times_C C_3$	$(156, 52, \ldots, 52, 3, 3)$	\mathcal{C}_{3}	(2.19) [25]
$(C_5 \times C_{13}) \times C_4$	$(260, 65, \ldots, 65, 4, 4, 4)$	C_{4}	(2.20) [25]
$C_{11}^2 \times Q_8$	$(968, 121, \ldots, 121, 8, 4, 4, 4)$	$O_{\rm s}$	(4.1) [25]

TABLE 9 (i) The finite groups satisfying $r(G) = 20$ and $\beta(G) > 8$

(iii) The finite groups satisfying $r(G) = 20$, $\beta(G) \le 8$, $5 \le \alpha(G) \le 10$ and $S(G)$ solvable

REMARK. In [25] Table 3, The following group is missing:

2. Preliminaries

We will often use the preliminary lemmas of [25]. Also we utilize the following lemmas:

LEMMA 1.1. *Let N be a normal subgroup of G such that* $G = N \times_A T$. *Then*: (1) $r_G(T) = r(T)$, (2) $r_G(nT) \ge r(T)$ for each $n \in N$.

PROOF. (1) Set $T = \bigcup_{i=1}^{t} Cl_{T}(h_{i})$. We have $\bigcup_{g \in G} T^{g} = \bigcup_{i=1}^{t} Cl_{G}(h_{i})$, and if h_i is conjugate to h_j in G, then there exists $nh \in NT$ such that $h_i^{nh} = h_j$, with *n* \in *N* and *h* \in *T*, therefore $h_i^{-1}h_i^{h_i^{-1}} = h_i^{-1}h_i^{h_i} = [h_i, n] \in$ *N* \cap *T* = 1, i.e. $Cl_{T}(h_i) = Cl_{T}(h_j)$ and $i = j$. Thus $r_G(T) = r(T)$.

(2) This result is an immediate consequence of the fact that $nh \sim Gn'h'$, $n, n' \in N$, $h, h' \in T$, implies $h \sim_{T} h'$.

LEMMA 1.2. If T is a nilpotent S_{π} -subgroup of g, then G has a normal π -complement if and only if $r_G(T) = r(T)$. In particular, if $\pi = \{p\}$ and P is a *Sylow p-subgroup of G, then G has a normal p-complement iff* $r_G(P) = r(P)$ *.*

PROOF. The non-trivial implication follows from [8] corollary 12.5 (p. 102).

LEMMA 1.3. *Let P be a Sylow p-subgroup of G. Then we have the following affirmations:*

(1) $r_G(C_G(P)) = r_{N_G(P)}(C_G(P)).$

(2) $|C|_G(c)| = \nu_p(G) \cdot |C|_{N_G(P)}(x)| \cdot (1/|C_G(x): C_{N_G(P)}(x)|)$ for each $x \in$ $N_G(P)$.

(3) If P is abelian, $N_G(P) = P \times_{\lambda} T$ and $C_G(P) = P \times T_1$ with $T_1 \leq T$, then we *have* $T_1 \trianglelefteq N_G(P)$ *and*

$$
r_{N_G(P)}(C_G(P)) = r_{N_G(P)}(T_1^*) + r_{N_G(P)}(P) + r_{N_G(P)}(P^*) \cdot r_{N_G(P)}(T_1^*).
$$

Furthermore, if $P \leq Z(N_G(P))$, *then* $r_G(N_G(P)) = r(N_G(P)) = |P| \cdot r(T)$.

PROOF. These results are immediate consequences of a well-known theorem of Burnside (of. [7] Theorem 1.1, p. 240).

REMARK. When P is an abelian group, the analysis of $\Delta_{N_G(P)}$ is developed using Lemma 2.11 of [25].

LEMMA 1.4. *Let G be a group whose elements have primary power orders. Let* $|G| = p_1^{a_1} \cdots p_t^{a_t}$ be the decomposition in primes factors of the order of G, with $p_i \neq p_j$ for each $i \neq j$, and let P_i be a Sylow p_i -subgroup of G for every $i = 1, ..., t$. *Then G has exactly* $(|Z(P_i)| - 1)/(|N_G(P_i)|P_i|)$ *conjugacy classes of cardinality* $|G/P_i|$ for each $i = 1, \ldots, t$. In particular, if the Sylow subgroups P_i are abelian, *then*

$$
r(G) = 1 + \sum_{i=1}^{t} (|Z(P_i)| - 1)/(|N_G(P_i)|P_i|).
$$

PROOF. Let $P \in \text{Syl}_p(G)$. The condition that G does not have elements non-divisible by two primes numbers order implies that $C_G(P)$ is a p-subgroup of G and that if $N_G(P) = P \times_{\lambda} T$, then T acts f.p.f. over P, that is, $N_G(P)$ = $P \times_f T$. Since $C_G(P) \trianglelefteq N_G(P)$ and $N_G(P)$ is a Frobenius group of kernel P, it follows that either $C_G(P) \leq P$ or $P < C_G(P)$, consequently $C_G(P) = Z(P)$. Moreover, for each $x \in Z(P)^*$, we have $|Cl_{N_Q(P)}(x)| = |x^T| = |T|$, so

$$
r_G(Z(P))=r_G(C_G(P))=r_{N_G(P)}(C_G(P))=1+(|Z(P)|-1)/|N_G(P)|P|,
$$

but $Cl_G(y) \cap Z(P)^* \neq \emptyset$ iff $P^s \leq C_G(y)$ for some $g \in G$, that is, if $|C_G(y)| =$

 $p^a = |P|$. Therefore $r_G(Z(P)) - 1 = (|Z(P)| - 1)/(|N_G(P)/P|)$ is the number of conjugacy classes of elements of G whose cardinality is $|G|/p^a$.

EXAMPLES. (1) By observing the orders of elements of A_5 , it is immediate that $N_{A_2}(C_3) \approx D_{10}$, $N_{A_3}(C_3) \approx \Sigma_3$ and $N_{A_3}(C_2^2) \approx A_4$. Then, if $|P_1| = 5$, $|P_2| = 3$ and $|P_3| = 4$, we have

$$
r(A_5) = 1 + (5-1)/(5 \cdot 2/5) + (3-1)/(3 \cdot 2/3) + (4-1)/(4 \cdot 3/4)
$$

= 5.

(2) Set $G = PSL(2,7)$. Then we have $N_G(C_7) = C_7 \times_c C_3$, $N_G(C_3) \simeq \Sigma_3$ and $N_G(D_8) \simeq D_8$, so G has

 $(7 - 1)/(7 \cdot 3/7) = 2$ conjugacy classes of cardinality $168/7 = 24$,

 $(2-1)/(8/8) = 1$ conjugacy classes of cardinality $168/8 = 21$,

 $(3-1)/(6/3) = 1$ conjugacy classes of cardinality $168/3 = 56$.

(3) Consider the group $G = C_2^4 \times_A A_5$ with A_5 acting transitively over C_2^4 . Then $N_G(C_5) \approx D_{10}$, $N_G(C_3) \approx \sum_{3}$ and if P is a Sylow 2-subgroup of G, then we have $N_G(P) = P \times_{\lambda} C_3 = C_2^4 \times_{\lambda} A_4$. Thus G has

 $(5-1)/(5.2/5) = 2$ conjugacy classes of cardinality $|G|/5$,

 $(3-1)/(6/3) = 1$ conjugacy classes of cardinality $|G|/3$,

 $(4-1)/(2⁶·3/2⁶) = 1$ conjugacy classes of cardinality $|G|/2⁶$.

Assume the hypothesis of Lemma 1.4; in general, non-abelian Sylow subgroups can exist. Now if $x \in G^*$ and $o(x) = p^e$, with p prime, then $C_G(x)$ is a p-group, so there exists $P \in Syl_p(G)$ such that $C_G(x) \leq P$. Consequently $|C_G(x)| = |C_P(x)|$ and $|Cl_G(x)| = |Cl_P(x)| \cdot |G/P|$, that is, the cardinal of a conjugacy class of G which is different from $|G/P|$ depends only on Δ_P . Thus, the possible values of the tuple Δ_G are bounded if we know previously Δ_P , when P is any Sylow subgroup of G . In general, we will write

$$
r(G) = 1 + \sum_{i=1}^{t} r_G(Z(P_i)^*) + \sum_{i=1}^{t} r_G^*(P_i - Z(P_i))
$$

in which we define $r_G^*(P_i - Z(P_i)) = r_G(P_i - Z(P_i)) - \mu_P$, with

$$
\mu_{P_i} = |\{\mathrm{Cl}_G(g) | \mathrm{Cl}_G(g) \cap Z(P_i) \neq \varnothing = \mathrm{Cl}_G(g) \cap (P_i - Z(P_i))\}|,
$$

that is,

$$
r(G) = 1 + \sum_{i=1}^{i} (|Z(P_i)| - 1)/(|N_G(P_i)/P_i|) + \sum_{i=1}^{i} r_G^*(P_i - Z(P_i)).
$$

Naturally $r_G(P_i - Z(P_i)) \le r_R(P_i - Z(P_i)).$

EXAMPLES. (1) Consider the group $G = PSL(2,7)$. Let $P \approx D_8$ a Sylow 2-subgroup of G. Then $\Delta_P = (8, 8, 4, 4, 4)$, so $\Delta_{D_8-Z(D_8)}^{D_8} = (4, 4, 4)$ and we have

$$
168 = 1 + 168/8 + 168/7 + 168/3 + \sum_{i=1}^{s} 7 \cdot 3 \cdot 8/2^{m_i}
$$
 with $2^{m_i} = 4$

for each *i*, consequently $s = 1$ and $\Delta_{PSL(2,7)} = (168, 8, 7, 7, 4, 3)$.

(2) Consider the group $G = M_9 = \text{PGL}^*(2, 9)$, which is the unique extension of PSL(2, 9) by C_2 with a 2-Sylow of the type SD₁₆. We have

$$
N_{M_9}(C_5) \approx C_5 \times_f C_4
$$
, $N_{M_9}(C_3^2) \approx C_3^2 \times_f Q_8$ and $N_{M_9}(SD_{16}) \approx SD_{16}$,

therefore M_9 has a unique conjugacy class of elements of order 5, a unique conjugacy class of elements of order 3 and a unique conjugacy class of elements of order 2 that are central in a 2-Sylow of $M₉$. We have

$$
\Delta_{\rm SD_{16} - Z(SD_{16})}^{\rm SD_{16}} = (8, 8, 8, 4),
$$

so we consider the equations:

(1)
\n
$$
720 = 1 + 720/16 + 720/9 + 720/5 + 9 \cdot 5 \cdot 2 \cdot t_1 + 9 \cdot 5 \cdot 4 \cdot t_2,
$$
\n
$$
r(G) = 4 + t_1 + t_2.
$$

(1) implies $5 = t_1 + 2t_2$, hence $(t_1, t_2) \in \{(1, 2), (3, 1)\}$ and the cardinals of the centralizers of the elements of these possible classes are (8, 4, 4) and (8, 8, 8, 4), being $r(G) = 7$ or 8, respectively. On the other hand, $\Delta_{A_6} = (360, 9, 9, 8, 5, 5, 4)$, hence $r(M_9) = 2 \cdot s + (7 - s)/2$ with $s \ge 3$ (cf. [25] Lemma 2.9), therefore $r(M_9) \ge$ 8 and necessarily $r(M₉) = 8$. Thus

$$
\Delta_{M_9} = ((720, 16, 9, 5), (8, 8, 8, 4)) = (720, 16, 9, 8, 8, 8, 5, 4).
$$

(3) Let us consider the group $G = C_2^4 \times_A A_5$ with A_5 acting transitively over C_2^4 , let $P \in \text{Syl}_2(G)$, then $\Delta_{P-Z(P)}^P = (16, \ldots, 16)$. Now observing the equations

$$
16 \cdot 60 = 1 + 960/5 + 960/5 + 960/3 + 960/2^{\circ} + (960/16) \cdot t
$$

and

$$
r(G)=5+t,
$$

it follows that $t = 4$ and $\Delta_G = (960, 64, 16, 16, 16, 16, 5, 5, 3)$.

LEMMA 1.5. *Set* $G = P\Gamma L(2, 9)$ *. Then we have*

$$
\Delta_G = (1440, 48, 40, 32, 18, 16, 16, 10, 10, 8, 8, 8, 6).
$$

 $r(G) = 13$, $\beta(G) = 1$, $G/S(G) \approx C_2^2$, $S(G) \approx A_6$ and $\alpha(G) = 8$.

PROOF. We know that $G/A_6 \approx C_2^2$ and that G has exactly three normal subgroups of index 2: $N_1 \approx \Sigma_6$, $N_2 \approx \text{PGL}(2, 9)$ and $N_3 \approx M_9$. Besides

$$
\Delta_{N_1} = (720, 48, 48, 18, 18, 16, 8, 8, 6, 6, 5),
$$

$$
\Delta_{N_2} = (720, 20, 16, 10, 10, 10, 10, 9, 8, 8, 8),
$$

$$
\Delta_{N_3} = (720, 16, 9, 8, 8, 8, 5, 4).
$$

Obviously, $r(G) = r_G(S(G)) + r_G(N_1 - S(G)) + r_G(N_2 - S(G)) + r_G(N_3 - S(G))$ and we have $r(G) = 2s_i + (r(N_i) - s_i)/2$, where s_i is the number of conjugacy classes of N_i fixed by the automorphism $\psi_i : N_i \rightarrow N_i$ defined by $\psi_i(x) = x^{\alpha_i}$ for each $x \in N_i$, with g_i an element of G such that $g = N_i \langle g_i \rangle$.

We have $N_1 = S(N_1) \cup (N_1 - S(N_1))$, $\Delta_{S(N_1)}^{N_1} = (720, 18, 18, 16, 8, 5)$ and $\Delta_{N_1-S(N_1)}^{N_1} = (48, 48, 8, 6, 6)$, so $s_1 \ge 5$ and $r(G) \in \{13, 16, 19, 22\}$. In [16] it is proved that $s_1 = 5$ and now it is immediate to conclude that $\Delta_{s(G)}^G = (1440, 32, 19, 16, 10)$, $\Delta_{N_1-S(G)}^G = (48, 16, 6), \Delta_{N_2-S(G)}^G = (8, 8)$ and $\Delta_{N_3-S(G)}^G = (40, 10, 8)$. Thus we obtain

 $\Delta_G = (1440, 48, 40, 32, 18, 16, 16, 10, 10, 8, 8, 8, 6)$ and $\alpha(G) = 13-5=8$.

LEMMA 1.6. (1) If G is a group such that $PSL(3, 4) \triangleleft G \leq Aut(PSL(3, 4))$, then $r(G) \geq 14$.

(2) $\Delta_{\text{PGL}(2,11)} = (20160, 24, 20, 12, \ldots, 12, 11, 10, \ldots, 10), r(\text{PGL}(2, 11)) = 13$ and $\alpha(G)=6.$

PROOF. These results rely on simple matrix calculations and using the tuples $\Delta_{PSL(3,4)} = (20160, 64, 16, 16, 16, 9, 7, 7, 5, 5), \Delta_{PSL(2,11)} = (660, 12, 11, 11, 6, 6, 5, 5)$ and Lemma 2.9(iii) and (iv) from $[25]$.

Let Γ be the family of all finite nilpotent groups. We define $\psi_{11} = \Phi_{11} \cap \Gamma$.

LEMMA 1.7. $\psi_{11} = 2^5 \Gamma_4 \cup \{2^5 \Gamma_3 a_i \mid 1 \le i \le 3\} \cup \{2^5 \Gamma_3 c_i \mid 1 \le i \le 2\} \cup \{2^5 \Gamma_3 d_i \mid 1 \le i \le 2\}.$ PROOF. Cf. [24].

In Lemmas 2.18, 2.19 and 2.20 from [25], all finite groups satisfying $1 \leq$ $\alpha(G) \leq 3$ are classified. In Lemma 4.1 from [25], we obtain the finite groups satisfying $\alpha(G)$ = 4 and with *S(G)* solvable. In the following, we will obtain all finite groups satisfying $\alpha(G) = 4$.

LEMMA 1.8. *Let G be a finite group with S(G) non-solvable and satisfying* $\alpha(G)$ = 4. Then either $G = \text{PGL}(2,7)$ or $G = (\text{PSL}(2,7) \times H) \times_{\lambda} C_2$ with $PSL(2, 7)C_2 = PGL(2, 7)$ *and* $H \times_A C_2 = H \times_C C_2$, *being* $r(G) = 6 + 3|H|$.

PROOF. We have $r(G/S(G)) \leq 5$. If $r(G/S(G)) = 5 = \alpha(G) + 1$, then $|C_G(x)| = |C_{\bar{G}}(\bar{x})|$ for each $x \in G - S(G)$ and $S(G)$ is solvable by Lemma 2.3 from [25], that is impossible.

If $r(G/S(G))=4$, then $G/S(G)$ is isomorphic to one of the groups C_4 , C_2^2 , D_{10} , and A_4 .

Suppose $G/S(G) = \overline{G} = \langle \overline{a} \rangle \simeq C_4$. Then

$$
\alpha(G) = 4 = r_G(aS(G)) + r_G(a^{-1}S(G)) + r_G(a^2S(G))
$$

forces that $r_G(aS(G))=1$, hence $C_G(a) = \langle a \rangle$ is isomorphic to C_4 and $S(G)$ is solvable, impossible.

Suppose $\bar{G} = \langle \bar{a}_1 \rangle \times \langle \bar{a}_2 \rangle \simeq C_2^2$. Then

$$
4 = r_G(a_1S(G)) + r_G(a_2S(G)) + r_G(a_1a_2S(G))
$$

implies that $r_G(aS(G)) = 1$ for some $a \in \{a_1, a_2, a_1a_2\}$, hence $|C_G(a)| = 4$ and if P is a 2-Sylow subgroup of G, then there is $\langle b \rangle \le P$ such that $P/\langle b \rangle \approx C_2$. We have $o(\bar{b}) = 2$. hence $b^2 \in S(G)$ and $S(G)$ has cyclic Sylow's 2-subgroups, so *S(G)* is solvable, impossible.

Assume $\bar{G} = \langle \bar{a} \rangle \times_{\ell} \langle \bar{b} \rangle \simeq D_{10}$. Then

$$
4 = r_G(aS(G)) + r_G(a^2S(G)) + r_G(bS(G))
$$

and we have $r_G(aS(G)) = 1$, so $C_G(a) = \langle a \rangle \simeq C_5$ acts f.p.f. over $S(G)$, therefore *S(G)* is solvable, impossible.

If $\bar{G} = \langle \bar{a}_1, \bar{a}_2 \rangle \times_I \langle \bar{b} \rangle \approx A_4$, then $r_G(bS(G)) = 1$, hence $C_G(b) \approx C_3$ and $S(G)$ is solvable impossible. Thus $r(\bar{G}) \leq 3$ and \bar{G} is isomorphic to one of the following groups: Σ_3 , C_3 , or C_2 .

If $\bar{G} = \langle \bar{a} \rangle \times_{f} \langle \bar{b} \rangle \simeq \Sigma_{3}$, then $4 = r_{G}(aS(G)) + r_{G}(bS(G))$ and $S(G)$ nonsolvable implies $r_G(aS(G)) = 2 = r_G(bS(G))$, hence $|C_G(b)| = 4$ and again $S(G)$ has cyclic 2-Sylow, that is impossible.

If $\bar{G} = \langle \bar{b} \rangle \approx C_3$, then $r_G(bS(G)) = 2$ and $\Delta_b = (6,6)$, hence Lemma 2.13(ii) from [25] implies that $S(G)$ is solvable.

Thus we conclude that $G/S(G)$ is isomorphic to C_2 . If there exists $g \in G$ - $S(G)$ such that $o(g) = 2^e$ and $|C_G(g)| = 2^n \cdot m$ with $n \le 3$, then G has sectional range at most 4 and necessarily either $G = PSL(2,7)$ or $G =$ $(PSL(2, 7) \times H) \times_{\lambda} C_2$ (cf. [18]). Assume that G has sectional range greater than or equal to 5, and let g be a 2-element in $G-S(G)$. Now, we consider the equation:

$$
1/2 = 1/2\lambda_1 + 1/2\lambda_2 + 1/2\lambda_3 + 1/2\lambda_4
$$
 with $\Delta_g = (2\lambda_1, ..., 2\lambda_4)$.

If $2\lambda_4 \ge 8$, then $\Delta_{G-S(G)}^G = (8, 8, 8, 8)$, impossible, hence $2\lambda_4 = 6$. If $2\lambda_3 \ge 12$, then $1/2 \le 1/6 + 3/12$, impossible too, hence $2\lambda_3 = 6$ and $\Delta_8 = (24, 8, 6, 6)$ or $(12, 12, 6, 6)$, therefore $|C_G(g)| = 2^n \cdot m$ with $n \le 3$, which is impossible.

REMARKS. (1) If A is a non-abelian simple normal subgroup of G and suppose that $G = (A \times H) \times_{\lambda} C_2 = (A \times H) \times_{\lambda} \langle b \rangle$ with $HC_2 = H \times_{f} C_2$ and $AC_2 \neq A \times C_2$, then $\alpha(G) = \alpha(AC_2)$ and $r(G) = 2s + (r(A)|H| - s)/2$, where s is the number of conjugate classes $\text{Cl}_A(a)$ of A such that $\text{Cl}_A(a)^b = \text{Cl}_A(a)$, i.e. $s = \alpha(AC_2)$ (it is an immediate consequence of [25] Lemma 2.9).

(2) If $G/S(G) = \langle \bar{g} \rangle \approx C_p$, with p prime, then we have $\alpha(G) = s \cdot (p-1)$, where s is the number of conjugacy classes of G fixed by the automorphism $\psi: S(G) \to S(G)$ defined by $\psi(x) = x^s$ for each $x \in S(G)$. In particular, $\alpha(G) =$ s, in case $p = 2$.

LEMMA 1.9. Let V be a vector space over Z_p of dimension n and let $f \in Aut_{Z_p}(V)$ be such that $f^{p'} = 1$ for some $t \in N$. Then $|C_v(f)| \geq p^e$, with e a *natural number satisfying* $e \geq n/m \geq n/p'$ *, where m is the degree of the minimal polynomial of f over* Z_p *. In particular, if* $p = 2$ *and* $o(f) = 2$ *, then* $|C_v(f)| \ge 2^k$ *if* $n = 2k$, and $|C_V(f)| \ge 2^{k+1}$ *if* $n = 2k + 1$ *for some natural number k.*

PROOF. We know that there exist f-invariable subspaces V_1, \ldots, V_s of V and polynomials $q_1(x),..., q_s(x) \in Z_p[x]$ such that $V = V_1 \bigoplus \cdots \bigoplus V_s$, $q_i(x)$ divides $q_{i+1}(x)$ for each $i=1,\ldots, s-1$, $q_s(x)$ is the minimal polynomial of f, $q_i(x)$ = pol. min.($f_{|V_i}$) and $q_1(x)q_2(x)\cdots q_s(x)$ is the characteristic polynomial of f. As f is a root of the polynomial $x^{p'}-1 = (x - 1)^{p'}$, the minimal polynomial pol. min.(f) divides $(x - 1)^{p'}$, so $m \leq p'$.

Let us consider the p-group $G = Hol(V, \langle f \rangle)$. We have $V_i \subseteq G$ for each i, hence $V_i \cap Z(G) \neq 1$ and therefore $|C_{V_i}(f)| \geq p$ for every i. In consequence $|C_V(f)| \geq p^s$. Besides

$$
1 \leq \text{degr.}(q_1(x)) \leq \cdots \leq \text{degr.}(q_s(x)) = m \leq p'
$$

and

$$
\text{degr.}(q_1) + \cdots + \text{degr.}(q_s) = n,
$$

hence $n \leq s \cdot \text{degr.}(q_s) = sm$, i.e. $s \geq n/m$.

EXAMPLE. Suppose $f \in Aut(C_3^4)$ and $o(f) = 3$, then $|C_{C_3^4}(f)| \ge 3^e$, with $e \ge$ 4/3, so $e \ge 2$ and $|C_{C_1^4}(f)| \ge 3^2$.

LEMMA 1.10. Let G be a group with $S(G)$ abelian and let $x \in G - S(G)$. Put $\bar{G} = G/S(G)$. Then $r_G(xS(G)) \geq o(\bar{x}) \cdot |C_G(x) \cap S(G)|/|C_{\bar{G}}(\bar{x})|$.

PROOF. Let Cl_G(xz_i), $j = 1, ..., t$ be the conjugacy classes of elements of G which have non-empty intersection with $xS(G)$. Then $t = r_G(xS(G))$ and $1/|C_{\tilde{G}}(\bar{x})| = \sum_{i=1}^{t} 1/|C_{G}(xz_{i})|$ (cf. [25] Lemma 2.1(ii)). Moreover, $o(\bar{x}\bar{z}_{i})=o(\bar{x})$ and $C_G(xz_i) \cap S(G) = C_G(x) \cap S(G)$, because $S(G)$ is an abelian group, therefore

$$
|C_G(xz_j)| \geq o(\bar{x}) \cdot |C_G(x) \cap S(G)| \quad \text{for every } j
$$

and consequently $t \geq o(\bar{x}) \cdot |C_G(x) \cap S(G)|/|C_{\bar{G}}(\bar{x})|$.

Lemma 1.10 is generally used with Lemma 1.9, fixing the possible values of $r_G(xS(G))$, then the cardinal of $C_G(x) \cap S(G)$ is bounded, and if $o(\bar{x})$ is the power of a prime number p , the situations that originate from fixing the possible orders of $C_G(x) \cap O_p(S(G))$ (= $C_G(x) \cap S(G)$) are now analyzed.

LEMMA 1.11. Let G be a finite group and let S_1, \ldots, S_n be normal sets of G. *Then*

$$
r_G\left(\bigcup_{i=1}^n S_i\right)=\sum_{t=1}^n\sum_{1\leq i_1<\cdots
$$

PROOF. This result follows immediately from an inductive process over n and from the fact that $r_G(S_1 \cup S_2) = r_G(S_1) + r_G(S_2) - r_G(S_1 \cap S_2)$.

LEMMA 1.12. *Let G be a group such that S(G) is abelian. Set*

$$
\bar{G}=G/S(G)=\mathrm{Cl}_{\bar{G}}(\bar{x}_1)\cup\cdots\cup\mathrm{Cl}_{\bar{G}}(\bar{x}_n) \quad and \quad \mathrm{Cl}_{\bar{G}}(\bar{x}_i)=\{\bar{x}_{i_1},\ldots,\bar{x}_{i_n}\}.
$$

Then $S_i = (C_G(x_{i_1}) \cap S(G)) \cup \cdots \cup ((C_G(x_{i_n}) \cap S(G))$ is a normal set in G and

$$
r(G) = \alpha(G) + r_G\left(\bigcup_{i=1}^n S_i\right) + \left(|S(G)| - \bigg|\bigcup_{i=1}^n S_i\bigg|\right) \bigg/ |G/S(G)|.
$$

PROOF. Let g be an element of G and set $\bar{x}_{i}^{\bar{g}} = \bar{x}_{i_k}$, then $x_{i}^{\bar{g}} = x_{i_k} \cdot z$ for some $z \in S(G)$ and $(C_G(x_i) \cap S(G))^s = C_G(x_{i_k}z) \cap S(G) = C_G(x_{i_k}) \cap S(G)$. Therefore S_i is a normal set in G. Besides, if $z \in S(G) - \bigcup_{i=1}^{n} S_i$, then $z^a = z^b$ with $a, b \in G - S(G)$ if and only if $z \in C_G(ab^{-1}) \cap S(G)$, so $\overline{a}\overline{b}^{-1} = \overline{1}$ and $aS(G) =$ *bS(G).* Therefore $|Cl_G(z)| = |G/S(G)|$ and thus we get the desired formula.

Lemmas 1.11 and 1.12 are generally used to determine $r(G)$, once the value of $\alpha(G)$ has been fixed.

LEMMA 1.13. Let G be a finite group such that $S(G)$ is not solvable and $\beta(G) = r(G) - j$ with $1 \leq j \leq 11$. Then G is isomorphic to one of the following *groups:* A_5 , A_6 , A_7 , Σ_5 , Σ_6 , $A_5 \times C_2$, $PSL(2, 7) \times C_2$, $PSL(2, 7)$, $PGL(2, 7)$, M_9 ,

PGL(2, 9), SL(2, 8), PFL(2, 8), PSL(2, 11), PSL(2, 13), PSL(2, 17), PSL(3, 4), M_{11} , Sz(8), $(A_5 \times C_3) \times_A C_2$ with $A_5C_2 \simeq \Sigma_5$ and $C_3C_2 \simeq \Sigma_3$, M_{22} , PSL(3, 3), and PSL(2, 19).

PROOF. We'll reason in a similar way as in Theorem 3.2 of [25].

If $S(G) = G$, then G is completely reducible, hence $G =$ $G_1 \times \cdots \times G_s \times Z(G)$ with the G_i simple non-abelian groups. Therefore

$$
5^{s} \cdot |Z(G)| - (s + |Z(G)| - 1) = r(G) - \beta(G) = j \le 11
$$

and necessarily $s = 1$ and $|Z(G)| \leq 2$. Thus either $G \in \{A_s \times C_2, \text{PSL}(2,7) \times C_2\}$ or G is a simple group with $r(G) \le 12$, hence from [1], G is isomorphic to one of the following groups: A_5 , PSL(2,7), A_6 , PSL(2,11), A_7 , PSL(2,13), SL(2,8), PSL(3, 4), M_{11} , Sz(8), PSL(2, 17), M_{22} , PSL(3, 3), PSL(2, 19).

Now we can suppose $S(G) < G$, that is, $\alpha(G) \geq 1$. Further, we deduce from Lemma 2.18 of [25] that $\alpha(G) \geq 3$. If $\alpha(G) = 3$, then Lemma 2.20 of [25] implies that G is isomorphic to one of the following groups: M_9 , Σ_5 , $(A_5 \times C_3) \times_A C_2$.

If $\alpha(G) = 4$, then it follows from Lemma 1.8 that $G \simeq \text{PGL}(2,7)$. Suppose $\alpha(G) \ge 5$. We have $3\beta(G) + \alpha(G) \le 11$ from Lemma 3.1 of [25], so $\beta(G) = 1$ or 2. If $\beta(G)=2$, then $r(G) \le 11+2=13$. Let $L_1 \ne L_2$ be the minimal normal subgroups of G, then $S(G) = L_1 \times L_2$. If L_1 and L_2 are not solvable, then

$$
r_G(S(G)) \ge 1 + r_G(L_1^*) + r_G(L_2^*) + r_G(L_1^*) \cdot r_G(L_2^*) \ge 1 + 3 + 3 + 3 \cdot 3 = 16,
$$

but $\alpha(G) \ge 5$ implies $r_G(S(G)) \le 13-5 = 8$, which is impossible. Thus, $L_1 \simeq C'_p$ for some prime p and L_2 is non-solvable and isomorphic to $A \times \cdots \times A$ with A a non-abelian simple group. Reasoning as above, we now have $r_G(S(G)) \geq$ $1+1+2 \cdot r_{G}(L_{2}^{*})$. If $e \ge 2$, then $A \times A$ has elements of orders 1, 2, p_{1} , p_{2} , $2p_{1}$, $2p_2$, p_1 p_2 , where $p_1 \neq p_2$ are two odd prime factors of $|A|$, thus $r_G(L_2^*) \ge 7$, that is impossible. Therefore $e = 1$ and $L_2 = A$ is a simple group. We have $2(1+r_G(L_2^*))\leq 13-5=8$, so $r_G(L_2^*)\leq 3$ and $|\{o(g) | g \in L_2^* \}| \leq 3$. Consequently $L_2 \simeq A_5$ by Lemma 2.12 of [25]. Besides, $L_1 \leq C_G(L_2)$. Suppose $C_G(L_2) = L_1$, then $G/L_1 \leq Aut(L_2) = \sum_{s}$, hence $G/S(G) \simeq C_2$, and $r_G(L_1^*) \geq$ $(p'-1)/2$, therefore $(p'-1)/2 \leq 1$, and necessarily $G = (C_3 \times A_5) \times (\Lambda C_2)$ being $\alpha(G) = 3$, impossible. Thus we can suppose $L_1 < C_G(L_2)$ and $G/S(G) \neq C_2$. By considering the different orders of elements in $S(G) = C_p^{\prime} \times A_5$, it follows that $r_G(S(G)) \geq 8$ and $\alpha(G) \leq 5$. Moreover, if $x \in C_G(L_2) - S(G)$, then every element of A_5 is centralized by x, so $xS(G)$ has elements of, at least, three different orders, hence $r_G(xS(G)) \geq 3$ and consequently $r(G/S(G)) \leq 4$ (otherwise, $\alpha(G) = r_G(xS(G)) + \sum_{i=1}^s r_G(x_iS(G))$ with $s \ge 3$ implies $\alpha(G) \ge 3 + 1 + 1 + 1 = 6$, impossible). If $r(G/S(G)) = 4$, then there exists $y \in G - S(G)$ such that

 $r_G(yS(G)) = 1$, hence $|C_G(y)| \in \{2, 3, 4, 5\}$ and necessarily $S(G)$ is solvable, impossible. If $G/S(G) = \langle \bar{x} \rangle \approx C_3$, then $\alpha(G) = 2 \cdot r_G(xS(G)) \ge 6$, impossible. Finally, if $G/S(G) = \langle \bar{a} \rangle \times_{f} \langle \bar{b} \rangle \approx \sum_{i=1}^{n}$, then $C_G(L_2) = S(G) \langle a \rangle$ and $r_G(bS(G)) \le$ 2, hence $|C_G(b)| = 2$ or 4 and $S(G)$ is solvable. Thus $\beta(G) = 1$ and $r(G) \le 12$. Set $S(G) = A \times \cdots \times A$, with A a non-abelian simple group. As $\alpha(G) \ge 5$, we have $r_G(S(G)) \leq 7$, hence $|\{o(g) | g \in S(G)\}| \leq 7$ and this implies that $e \leq 2$. If $e = 2$ and $p_1 \neq p_2$ are two odd prime numbers, divisors of |A|, then *S(G)* has elements of order 1, 2, p_1 , p_2 , $2p_1$, $2p_2$, p_1p_2 , hence $r_G(S(G)) = 7$ and $\alpha(G) = 5$. Moreover, necessarily $|\{o(g) | g \in A^*\}| = 3$, so $A \approx A_5$. We have $C_G(S(G)) = 1$, because $\beta(G) = 1$ and also

$$
S(G) \triangleleft G \leq \text{Aut}(S(G)) = \text{Aut}(A_s) \sim \Sigma_2 = \Sigma_s \sim \Sigma_2 = (\Sigma_s \times \Sigma_s) \times_A C_2,
$$

being $Aut(A_5 \times A_5) \simeq C_2 \sim C_2 = D_8$. If $G/A_5^2 \simeq C_2$, then $r(G) = 2s + (25 - s)/2$ and 2 divides $|A_s|^2$, so $s \ge 2$, but $s \equiv 1 \pmod{2}$, hence $s \ge 3$ and $r(G) \ge 6+11 =$ 17, that is impossible. If $|G/S(G)| = 4$ or $G/S(G) \approx D_8$, then there exists $y \in G - S(G)$ such that $r_G(yS(G)) = 1$, hence $|C_G(y)| = 4$ and $S(G)$ is solvable, impossible. Thus, necessarily $S(G) = A$ is a non-abelian simple group, $\beta(G) =$ 1, $C_G(A) = 1$ and $A \triangleleft G \leq Aut(A)$. Further, $r(G) \leq 12$ and $\alpha(G) \geq 5$.

If $\alpha(G) \geq 7$, then $r_G(S(G)) \leq 5$, hence $|\{o(g) | g \in A\}| \leq 5$ and necessarily $A \in \{A_5, \text{PSL}(2, 7), A_6, \text{SL}(2, 8)\}.$ We have $\text{Aut}(A_5) \simeq \Sigma_5$, $\text{Aut}(A_6) \simeq \text{P}\Gamma\text{L}(2, 9),$ Aut(PSL(2,7)) \approx PGL(2,7) and Aut(SL(2,8)) = PTL(2,8), and the possible groups that appear here satisfy either $r(G) > 12$ or $\alpha(G) < 7$. Therefore $\alpha(G) \in \{5, 6\}$ and consequently $r(G/S(G)) \leq 7$.

If $r(G/S(G)) = 7 = \alpha(G) + 1$, then $|C_G(x)| = |C_{\bar{G}}(\bar{x})|$ for each $x \in G - S(G)$ and Lemma 2.3 of [25] yields that *S(G)* is abelian, impossible.

If $r(G/S(G))=5$ or 6, then, at least, there are $x, y \in G-S(G)$ such that $r_G(xS(G)) = 1 = r_G(yS(G))$ and \bar{x} does not conjugate with \bar{y} in \bar{G} . Now, from an inspection of the tuples $\Delta_{\bar{G}}$ of the groups with 5 or 6 conjugate classes, we deduce from Lemma 2.13 of [25] that *S(G)* is solvable, which is impossible. Thus we can suppose that $G/S(G)$ is isomorphic to one of the following groups: C_2 , C_3 , Σ_3 , C_4 , $C_2 \times C_2$, D_{10} and A_4 .

If $G/S(G) \simeq A_4$, we have $\alpha(G) = r_G(aS(G)) + r_G(bS(G)) + r_G(b^{-1}S(G)) \leq 6$ with $o(\bar{a}) = 2$ and $o(\bar{b}) = 3$, hence $r_G(bS(G)) \leq 2$, so $|C_G(b)| = 3$ or 6 and $S(G)$ is solvable by Lemma 2.13 (cf. [25]). Similarly, the case $\bar{G} \approx D_{10}$ cannot arise here.

Suppose $|\bar{G}| = 4$, then there exists $b \in G - S(G)$ such that $r_G(bS(G)) = 2$, hence $\Delta_b = (8, 8)$ and G has sectional rank at most 4. Now [8] and Lemmas 1.5 and 1.6 imply that there is not any group in this case.

$$
a^{3} = b^{3} = (ba)^{2} = 1 = d^{2}, (a^{2}ba^{2})^{2}a^{3} = 1, x_{1}^{2} = x_{2},
$$

\n
$$
x_{2}^{2} = x_{3}, x_{3}^{2} = x_{4}, x_{4}^{2} = x_{1}x_{2}x_{4}, x_{1}^{3} = x_{1}x_{2}, x_{2}^{5} = x_{1},
$$

\n
$$
x_{2}^{3} = x_{2}x_{3}x_{4}, x_{4}^{5} = x_{1}x_{3}, x_{4}^{4} = x_{1}, x_{2}^{4} = x_{2}, x_{3}^{4} = x_{2}x_{3}, x_{4}^{4} = x_{1}x_{2}x_{4}
$$

$$
C_2^3
$$

$$
C_8 \qquad (C_{13} \times H) \times_{\lambda} C_8 = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \qquad r = 14 + 13 \cdot (|H| - 1)/8
$$

with $x^a = x^5$, and $H(a) = H \times_f(a)$
 $(C_3 \times H) \times_{\lambda} C_8 = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \qquad r = 12 + 3 \cdot (|H| - 1)/8$
with $x^a = x^{-1}$, and $H(a) = H \times_f(a)$

If
$$
r(G/S(G)) = 9
$$
, then $G/S(G) \approx C_9$ and we have:
\n C_9 $(C_2^2 \times Y) \times_{\lambda} C_9 = (\langle x, y \rangle \times Y) \times_{\lambda} \langle a \rangle$ with
\n $x^a = y, y^a = xy, Y(a) = Y \times_{f} \langle a \rangle$ $r = 12 + 4 \cdot (|Y|-1)/9$

If $r(G/S(G))=10$, then $G/S(G) \in \{M_{16}, C_2 \times_{\lambda} \Sigma_3, C_2 \times_{\lambda} C_6\}$ and we have:

$$
M_{16} \t C_{5}^{2} \times_{\lambda} M_{16} = \langle x_{1}, x_{2} \rangle \times_{\lambda} \langle a, b \rangle \text{ with } a^{\circ} = 1 = b^{\circ}, \t r = 13, \beta(G) = 1
$$

\n
$$
a^{b} = a^{5}, x_{1}^{a} = x_{2}, x_{2}^{a} = x_{1}^{2}, x_{1}^{b} = x_{1}, x_{2}^{b} = x_{2}^{-1}
$$

\n
$$
C_{2}^{4} \times_{\lambda} \sum_{3} P_{1} \times_{\lambda} \sum_{3} = P_{1} \times_{\lambda} \langle a, b \rangle \text{ with } a^{3} = b^{2} = 1, a^{b} = a^{-1}, \t r = 12, \beta(G) = 1
$$

\n
$$
P_{1} = C_{2}^{4} \times_{\lambda} C_{2}^{2} = \langle z_{1}, z_{2}, a_{1}, a_{2} \rangle \times_{\lambda} \langle b_{1}, b_{2} \rangle \text{ with}
$$

If $\bar{G} = \langle \bar{a} \rangle \times f \langle \bar{b} \rangle = \sum_{3}$, then Lemmas 2.4 and 2.13 of [25] yield $r_G(aS(G)) \geq 3$ and $r_G(bS(G)) \geq 4$ respectively, impossible.

So then, either $G/S(G) \cong C_3$ or $G/S(G) \cong C_2$ with $\alpha(G) \in \{5,6\}$ and $r(G) \leq$ 12.

If $G/S(G) = \langle \overline{b} \rangle \simeq C_3$, then necessarily $r_G(bS(G)) = 3 = r_G(b^{-1}S(G))$, hence $\alpha(G)$ = 6 and $r_G(A)$ = 6. If $|\{o(g) | g \in A\}| \leq 5$, then A is isomorphic to one of the following groups: A_5 , A_6 , PSL(2, 7), SL(2, 8), so $G = P\Gamma L(2, 8)$ ($\alpha(G) = 6$). On the other hand, if $|\{o(g) | g \in A\}| = 6$, then $r(G) = 11$ or 12 and $r_G(A) = 6$ implies that " $a_1 \sim_G a_2$ iff $o(a_1) = o(a_2)$ " for every $a_1, a_2 \in A$. Let s be the number of conjugate classes of A fixed by conjugation of b. Then $6 = \alpha(G)$ $s \cdot 2$ implies $s = 3$ and

$$
r(A) = 3 + (r_G(A) - 3) \cdot 3 = 12,
$$

hence $A \in \{M_{22}, \text{PSL}(3, 3), \text{PSL}(2, 19)\}\$ which is impossible.

Finally, we consider only the case $G/S(G) \simeq C_2$. Then $r(G) =$ $2s + (r(A) - s)/2$ with $s = \alpha(G)$, and $r(A) = s + (r_G(A) - s) \cdot 2 = s + (6 - s) \cdot 2$. If $s = 6$, then $r(A) = 6$ and $A = PSL(2, 7)$, impossible. Thus we have $s = 5$ and $r(A) = 7$, hence either $G \simeq PSL(2, 9)$ ($\alpha(G) = 5$) or $G \simeq \Sigma_6$ ($\alpha(G) = 5$).

LEMMA 1.14. *Let G be a non-nilpotent group with S(G) abelian and satisfy*ing the conditions $\alpha(G) = 10$ and $r(G/S(G)) \leq 10$. Then G is isomorphic to one *group of Table* 10.

PROOF. The reasonings are similar to the ones followed in Lemma 4.2 of [25] for $\alpha(G) \leq 9$, and for that reason we don't repeat them here.

LEMMA 1.15. Let G be a non-nilpotent group with $S(G)$ solvable. If $\alpha(G)$ = 10 and $r(G/S(G)) = 11$, then G is isomorphic to one of the following groups:

- (1) $H \times_{r} C_{11}$ ($r = 11 + (|H|-1)/11$),
- (2) $Y \times_{t} Q_{2}$ ($r = 11 + (|Y|-1)/27$),
- (3) $H \times_{t} Q_{32}$ (r = 11 + (|H|-1)/32).

PROOF. Let's assume $r(G/S(G))=11$. Then $|C_{\bar{G}}(\bar{x})|=|C_{\bar{G}}(x)|$ for every $x \in G - S(G)$, where $\overline{G} = G/S(G)$, and the result follows immediately from Lemma 2.3 (cf. [25]) observing the tuples $\Delta_{\tilde{G}}$ for $r(\tilde{G}) = 11$ from Table 3 of [25].

LEMMA 1.16. Let G be a nilpotent group such that $\alpha(G) \leq 10$. Then G is *isomorphic to one of the following groups:*

Abelian: 1, C_4 , C_8 , $C_2 \times C_4$, C_9 , $C_4 \times C_2^2$, C_{12} , C_{20} , *and* $Y=$ $C_2^e \times C_{p_1}^{t_1} \times \cdots \times C_{p_s}^{t_s}.$

Non-abelian: D_8 , Q_8 , Q_1 , Q_2 , $C_3 \times D_8$, $C_3 \times Q_8$, $C_2 \times D_8$, $C_2 \times Q_8$, $C_4 \times_{\lambda} C_4$ = $\langle a \rangle \times_{\lambda} \langle b \rangle$ *with* $a^{b} = a^{-1}$, $(C_{4} \times C_{2}) \times_{\lambda_{1}} C_{2} = (\langle a \rangle \times \langle b \rangle) \times_{\lambda_{1}} \langle c \rangle$ *with* $a^{c} = ab, b^{c} =$ *b,* $(C_4 \times C_2) \times_b C_2 = (\langle a \rangle \times \langle b \rangle) \times_{b_2} \langle c \rangle$ with $a^c = a$, $b^c = a^2b$, D_{16} , SD_{16} , Q_{16} , $D_{16} \times C_2$, $SD_{16} \times C_2$, $Q_{16} \times C_2$, $(C_8 \times C_2) \times (C_2 = (\langle a \rangle \times \langle b \rangle) \times (\langle c \rangle \times \langle a \rangle \times a^c = a^{-1}b$, $b^c = b$, M_{16} , $(C_8 \times C_2) \cdot C_4 = (\langle a \rangle \times \langle b \rangle) \cdot \langle c \rangle$ *with* $c^2 = a^4$, $[b, c] = 1$, $a^c = a^{-1}b$, $C_8 \times_{\lambda_1} C_4 = \langle a \rangle \times_{\lambda_1} \langle b \rangle$ with $a^b = a^{-1}$, $C_8 \times_{\lambda_2} C_4 = \langle a \rangle \times_{\lambda_2} \langle b \rangle$ with $a^b = a^3$, $C_2^4 \times_A C_2 = \langle a_1, a_2, a_3, a_4 \rangle \times_A \langle b \rangle$ with $a_1^b = a_1, a_2^b = a_2, a_3^b = a_1 a_3, a_4^b = a_2 a_4,$ $C_4^2x_{\lambda_1}C_2 = (\langle a \rangle \times \langle b \rangle) \times_{\lambda_1} \langle c \rangle$ with $a^c = a^{-1}$, $b^c = b^{-1}$, $(C_4 \times C_4)$ $C_4 =$ $((a) \times (b))_i \cdot (c)$ with $c^2 = a^2$, $a^c = a^{-1}$, $b^c = b^{-1}$, $(C_2^2 \times C_4) \times \frac{1}{a}$, $C_2 =$ $(\langle a_1, a_2 \rangle \times \langle a_3 \rangle) \times_{\lambda_1} \langle b \rangle$ with $a_1^b = a_1, a_2^b = a_1 a_2, a_3^b = a_3^{-1}, (C_2^2 \times C_4) \cdot C_4 =$ $(\langle a_1, a_2 \rangle \times \langle a_3 \rangle) \cdot \langle b \rangle$ with $a_1^b = a_1, a_2^b = a_1 a_2, a_3^b = a_3^c$, $b^2 = a_3^2, (C_2^2 \times C_4) \times_{\lambda_2} C_2 =$ $(\langle a_1, a_2 \rangle \times \langle a_3 \rangle) \times_{\lambda_2} \langle b \rangle$ with $a_1^b = a_1, a_2^b = a_1 a_2, a_3^b = a_1^2 a_3, C_4^2 \times_{\lambda_2} C_2 =$ $(\langle a \rangle \times \langle b \rangle) \times_{\lambda_2} \langle c \rangle$ with $a^c = a^{-1}$, $b^c = a^2 b^{-1}$, $(C_4 \times C_4)_2 \cdot C_4 = (\langle a \rangle \times \langle b \rangle)_2 \cdot \langle c \rangle$ *with* $a^c = a^{-1}$, $b^c = a^2b^{-1}$, $c^2 = (ab)^2$, Hol C_8 , D_{32} , SD_{32} , Q_{32} , $(C_8 \times_A C_2) \cdot C_4 =$ $((a) \times_{\lambda} \langle b \rangle) \cdot (c)$ with $a^{b} = a^{5}$, $a^{c} = ba$, $b^{c} = b$, $c^{2} = a^{4}$, $(C_{8} \times_{\lambda} C_{2}) \times_{\lambda} C_{2} =$ $((a)\times_{\lambda} \langle b\rangle)\times_{\lambda} \langle c\rangle$ *with* $a^{b} = a^{5}$, $a^{c} = ba$, $b^{c} = b$, $C_{2}^{3}\times_{\lambda} C_{4} = \langle a,b,c\rangle\times_{\lambda} \langle d\rangle$ *with relations* $a^d = a$, $b^d = ab$, $c^d = abc$.

PROOF. If G is abelian, it is immediate. On the other hand, in case G is non-abelian, set $G = P_1 \times \cdots \times P_r$ with the P_i Sylow p_i -subgroups of G. Then we have $S(G) = \Omega_1(Z(P_1)) \times \cdots \times \Omega_1(Z(P_n))$. If $|G|$ is divisible by at least two prime numbers, it follows easily that $G \approx C_3 \times D_8$ of $G \approx C_3 \times Q_8$. So we can suppose that G is a p-group. If $p \neq 2$, then necessarily $p = 3$ and $G \approx Q_1$ or $G \simeq Q_2$. Suppose that G is a 2-group. We have $r(G/S(G)) \leq \alpha(G)+1 = 11$, hence $\bar{G} = G/S(G)$ is isomorphic to one of the following groups: C_2 , C_4 , C_2^2 , D_8 ,

 Q_8 , SD₁₆, Q_{16} , D_{16} , C_8 , $C_2 \times C_4$, C_2^3 , $C_2 \times D_8$, $C_2 \times Q_8$, $C_4 \times Z_4$, $(C_4 \times C_2) \times_{\lambda_1} C_2$, $C_8\times_{\lambda} C_2$, $(C_4\times C_2)\times_{\lambda} C_2$, D_{32} , Q_{32} , SD_{32} , $2^5\Gamma_6a_1$, $2^5\Gamma_6a_2$, $2^5\Gamma_7a_1$, $2^5\Gamma_7a_2$, $2^5\Gamma_7a_3$.

If $G/S(G)$ is a cyclic group, then G is abelian, because $S(G) \leq Z(G)$, which is impossible.

If $G/S(G) \simeq C_2^2$, then $\alpha(G) = \sum_{i=1}^3 r_G(d_iS(G))$, so there exists i such that $r_G(d_iS(G)) \leq 3$, consequently $3 \geq 2 \cdot |S(G)|/4$, hence $|S(G)| \leq 6$, and either $|S(G)| = 2$, hence $G \in \{D_8, Q_8\}$, or $|S(G)| = 4$ and G is isomorphic to one of the following groups: $C_2 \times D_8$, $C_2 \times Q_8$, $C_4 \times C_4$, $(C_4 \times C_2) \times_{\lambda_1} C_2$.

If $G/S(G) \simeq D_{8}$, then

 $a(G) = |S(G)| + r_G(a^2S(G)) + r_G(bS(G)) + r_G(abS(G))$ and $|S(G)| \in \{2, 4\}.$

If $|S(G)| = 2$, then G is isomorphic to one of the following groups: D_{16} , SD_{16} , Q_{16} , M_{16} , $(C_4 \times C_2) \times_{\lambda_2} C_2$. If $|S(G)| = 4$, then $G/S(G) \simeq D_8$ with $S(G) =$ $\Omega_1(Z(G)) \simeq C_2^2$. Besides, there exists $b \in G - S(G)$ such that $|C_G(b)| = 8$, because $\alpha(G) \le 10$, so $Z(G) = S(G)$ and $r(G) \le 10+4 = 14$. Therefore $|G/G'| = 8$ and consequently G is one of the ten groups of the first branch of the family Γ_3 (the second branch satisfies $|G/G'| = 2^4$).

Suppose $G/S(G) \simeq Q_8$, then $\alpha(G) = 3|S(G)| + r_G(a^2S(G))$, so $|S(G)| = 2$, impossible.

Suppose $G/S(G) \in \{D_{16}, SD_{16}, Q_{16}\}\$ and let \bar{a} be an element of order 8 in $G/S(G)$, then $2|C_G(a) \cap S(G)| = 2 \cdot |S(G)| \le 10-4$, so $|S(G)| = 2$ and $r(G) \le$ 12. Thus $G \in \{D_{32}, SD_{32}, Q_{32}\}.$

In other cases we have $|S(G)|=4$ for $|G/S(G)| \le 16$ and $|S(G)|=2$ if $|G/S(G)| = 32$, as follows from a simple inspection of the tuples $\Delta_{\tilde{G}}$ and of the fact that $\alpha(G) \leq 10$. Therefore $r(G) \leq 14$, $|G/G'| \leq 2^3$ and in these cases G is a stem group. Further, either G has order 32 and is in one of the families Γ_i , $i = 2, 3, 4, 6, 7$, or G is a stem group of order 64 of the families Γ_{22} or Γ_{23} , being for these groups $r(G) = 13$, $Z(G) = S(G) \approx C_2$ and $\alpha(G) = 11$, impossible.

THEOREM 1.17. $G \in \Phi_{11}$ if and only if G is one of the following groups: M_{22} , PSL(3, 3), PSL(2, 19), $C_{37} \times_{f} C_{6}$, $C_{3}^{4} \times_{f} Q_{16}$, $C_{11}^{2} \times_{f} SL(2,3)$, $C_{2}^{4} \times_{x_{2}} A_{5}$, $C_3^4 \times_f (C_5 \times_A C_4)$, $C_{19}^2 \times_f SL(2, 5)$, $C_2^4 \times_A A_6$, $\Sigma_5^{(1)}$, $\Sigma_5^{(2)}$, $C_2^4 \times_A \Sigma_5$, $P_1 \times_A \Sigma_3$, $P_1 \times_A C_6$, $P_2 \times_A C_6$, $C_3^4 \times_A (C_5 \times_A C_8)$, $C_5^2 \times_A C_4$, $C_2^2 \times_A (C_{15} \times_A C_2)$, $C_5 \times_A D_8$, $C_5 \times_A D_8$, $C_5 \times_A Q_8$, $C_2 \times SL(2,3)$ U $2^5 \Gamma_4$ U $\{2^5 \Gamma_3 a_i | 1 \le i \le 3\}$ U $\{2^5 \Gamma_3 c_i | 1 \le i \le 2\}$ U ${2^5\Gamma_3d_1, 2^5\Gamma_3d_2} \cup {C_3^4\times_{f}Q_8, (C_3\times C_9)\times_{f}C_2, C_7^2\times_{f}C_3}.$

PROOF. If is an immediate consequence from Theorem 2.17 [25], Lemma 2.18 [25], Lemma 2.19 [25], Lemma 2.20 [25], Theorem 3.2 [25], Lemma 4.1 [25], Lemma 4.2 [25], Lemma 4.5 [25], Lemma 4.8 [25], Lemma 4.11 [25], Lemma 4.14 [25], and Lemmas 1.8, 1.13, 1.14, 1.15 and 1.16.

COROLLARY 1.18. $r(G) = 12$ iff G is isomorphic to one of the groups listed in *Table 1.*

COROLLARY 1.19. (1) $r(G) = 13$ and $\beta(G) > 1$ iff G is isomorphic to one of the *groups listed in Table* 2(i).

(2) $r(G) = 13$, $\beta(G) = 1$ and $0 \leq \alpha(G) \leq 4$ *iff* G is isomorphic to one of the *group listed in Table* 2(ii).

(3) $r(G) = 13$, $\beta(G) = 1$, $5 \leq \alpha(G) \leq 10$ and $S(G)$ is solvable iff G is isomor*phic to one of the group listed in Table* 2(iii).

 \ddotsc

 \ddotsc

COROLLARY 1.26. (1) *There are no groups satisfying* $r(G) = 20$ *and* $\beta(G) > 8$.

 \cdots

(2) $r(G)=20$, $\beta(G)\leq 8$ and $0\leq \alpha(G)\leq 4$ *iff* G is isomorphic to one of the *groups listed in Table* 9(ii).

(3) $r(G) = 20$, $\beta(G) \leq 8$, $5 \leq \alpha(G) \leq 1$ and $S(G)$ is solvable iff G is isomorphic *to one of the group listed in Table* 9(iii).

COROLLARY 1.27. *Set* $n \in \mathbb{N}$, $n \ge 21$. *Then* $r(G) = n$ *and* $\beta(G) = n - a$ with $1 \le a \le 11$, *if and only if* $G \in \{F'_{n,1}, F'_{n,2}, F'_{n,3}, F'_{n,4}, F'_{n,5}, F'_{n,6}, F'_{n,7}, F'_{n,8}\}$ with $t_1 = \log_2 n$, $t_2 = \log_3(2n - 3)$, $t_3 = (\log_2(3n - 8))/2$, $t_4 = \log_5(4n - 15)$, $t_5 =$ $log_7(6n - 35), t_6 = (log_2(7n - 48))/3, t_7 = (log_3(8n - 63))/2, t_8 = log_{11}(10n - 99),$ and where $F_{i,i}$ denote $F_{i,i}$ if t is a natural number, and is otherwise dropped from the *list.*

PROOF. It follows from Theorem 4.3 [25], Theorem 4.6 [25], Theorem 4.9 [25], Theorem 4.12 [25], Theorem 4.15 [25] and Theorem 1.17.

REFERENCES

1. A. G. Aleksandrov and K. A. Komissarcik, *Simple groups with a small number of conjugacy classes,* in *Algorithmic Studies in Combinatorics* (Russian), Nauka, Moscow, 1978, pp. 162-172, 187.

2. W. Burnside, *Theory of Groups of Finite Order*, 2nd eds., Dover, 1955.

3. A. R. Camina, *Some conditions which almost characterize Frobenius groups,* Isr. J. Math. 31 (1978), 153--160.

4. D. ChiUag and I. D. Macdonald, *Generalized Frobenius groups,* Isr. J. Math. 47 (1984), **111-122.**

5. M. J. Collins and B. Rickman, *Finite groups admitting an automorphism with two.fixed points,* J. Algebra 49 (1977), 547-563.

6. W. Feit and J. Thompson, *Finite groups which contain a sell-centralizing subgroup o[order three, Nagoya Math. J. 21 (1962), 185-197.*

7. D. Gorenstein, *Finite Groups,* Harper and Row, New York, 1968.

8. D. Gorenstein and K. Harada, *Finite groups whose 2-subgroups are generated by at most 4 elements,* Mem. Am. Math. Soc. 147 (1974).

9. K. Harada, *On finite groups having self-centralizing 2-subgroups of small order*, J. Algebra 33 (1975), 144-160.

10. B. Huppert, *Endliche Gruppen I,* Springer-Verlag, Berlin-Heidelberg-New York, 1967.

11. M. I. Kargapolov and Ju. I. Merzljakov, *Fundamentals of the Theory of Groups,* Springer-Verlag, New York, 1976.

12. L. F. Kosvintsev, *Over the theory of groups with properties given over the centralizers of involutions,* Sverdlovsk (Ural.), Summary thesis Doct., 1974.

13. J. D. Macdonald, *Some p-groups of Frobenius and extra-special type,* Isr. J. Math. 40 (1981), 350-364.

14. A. Mann, *Conjugacy classes in finite groups* Isr. J. Math. 31 (1978), 78-84.

15. F. M. Markell, *Groups with many conjugate elements,* J. Algebra 26 (1973), 69-74.

16. D. W. Miller, *On a iheorem of H61der,* Math. Monthly 65 (1958), 252-254.

17. V. A. Odincov and A. I. Starostin, *Finite groups with 9 classes of conjugate elements* (Russian), Ural. Gos. Univ. Math. Zap. 10, Issled Sovremen, Algebre, 152 (1976), 114-134.

18. D. Passman, *Permutation Groups,* Harper and Row, New York, 1968.

19. J. Poland, *Finite groups with a given number of conjugate classes,* Canad. J. Math. 20 (1969), 456-464.

20. J. S. Rose, *A Course on Group Theory,* Cambridge Univ. Press, London, 1978.

21. D. I. Sigley, *Groups involving five complete sets of non-invariant conjugate operators*, Duke Math. J. 1 (1935), 477-479.

22. M. Suzuki, *On finite groups containing an element of order 4 which commutes only with its own powers,* Ann. Math. 3 (1959), 255-271.

23. J. G. Thompson, *Finite groups with fixed-point-free automorphisms of prime order,* Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578-581.

24. A. Vera L6pez and J. Vera L6pez, *Clasificaci6n de grupos nilpotentes finitos segfin el nfimero de clases de conjugaci6n y el de normales minimales,* Acta VIII J. Mat. Hisp-Lus. Coimbra I (1981), 245-252.

25. A. Vera López and J. Vera López, *Classification of finite groups according to the number of conjugacy classes,* lsr. J. Math. 51 (1985), 305-338.