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ABSTRACT

In the following, G denotes a finite group, r(G) the number of conjugacy
classes of G, B(G) the number of minimal normal subgroups of G and «(G)
the number of conjugate classes of G not contained in the socle S(G). Let
D, ={G|[3(G)=1(G)—j}. In this paper, the family @, is classified. In
addition, from a si{nplle inspection of the groups with r(G) = b conjugate classes
that appear in U ;. ®;, we obtain all finite groups satisfying one of the
following conditions: (1) r(G)=12; (2) r(G)=13 and B(G)>1; ...; (9)
r(G)=20and B(G)>8;(10) r(G)=n and B(G)=n—a with1=a =11, for
each integer n =21. Also, we obtain all finite groups G with 13 =r(G) =20,
B(G)=r(G)—12, and satisfying one of the following conditions: (i) 0=
a(G)=4; (1) 5= a(G)=10 and S(G) solvable.

1. Introduction

In this work, G will denote a finite group, r = r(G) the number of conjugacy
classes, 8(G) the number of minimal normal subgroups of G, and a(G) the
number of conjugate classes of G not contained in the socle S(G).

The possibility of classifying finite groups according to the number r(G) and
to some properties of their conjugacy classes was suggested in [2].

The classification of all finite groups with r(G)=9 was carried out in a series
of papers by G. A. Miller and W. Burnside (r(G) =5, cf. [2] Note A, 1910), D. L.
Sigley (r(G) =6, [21], 1935), J. Poland (r(G) =7, [19], 1966), L. F. Kosvintsev
(r(G)=8, [12], 1974) and V. A. Odincov, A. L. Starostin (r(G) =19, [17], 1976).
In 1978, A. G. Aleksandrov and K. A. Komissarcik ([1]) found all finite simple
groups with r(G)=12.
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In [25] we approached the problem of classifying finite groups according to the
number r(G) through the classification of the families ®; ={G fB(G) =
r(G)—j} for small values of the natural number j. The families ®;, i =
1,2,...,10 are classified and as an immediate corollary, the previously known
classification of finite groups with r(G) =9 is found, as well as that of those finite
groups satisfying one of the following conditions:

(i) r(G)=10,

(i) r(G)=11,

(iii) r(G)=n and B(G)=n —a with 1 =a =10, for each integer n = 12.

In this paper, all groups G with B(G) = r(G)—11 are classified. Using the
results of [25], we obtain as an immediate corollary all finite groups satisfying
one of the following conditions:

(1) r(G)=12,

(2) r(G)=13 and B(G)>1,

(3) r(G)=14 and B(G)>2,

9) r(G)=20 and B(G)>8,

(10) r(G)=n and B(G)=n —a with 1 =a =11, for each integer n = 21.

Moreover, we obtain all finite groups G with 13=r(G)=20 and B(G)=
r(G)— 12, and satisfying one of the following conditions:

(a) 0=a(G)=4,

(b) 5= a(G)=10 and S(G) solvable.

We shall follow closely the notation introduced in [25]. If @ # S C G, we
define

ra($)={Cls ()| Cla (8) N S AT}

In addition, if S is a normal set in G, we define A§ = (| Cs (x))], ..., | Co (x.)]), if
|Cs(x))|Z - =|Cs(x) and S = Clg (x,)U - - - U Clg (x,). In particular, if S(G)
denotes the socle of G and So= U,cc(xS(G))’, then we write A, = A7 = A§,
Finally, in case S = G, we set AS = Ag.

Also, (a) = C,, denotes a cyclic group of order m generated by a, 39 denotes
the two non-isomorphic proper coverings of 3, by C,;, and

My ={a, b ‘azm =1=b%a’=a"""")

denotes the ordinary non-abelian group of order 2"
Now, the finite groups satisfying conditions (1)-~(9) are described in Tables 1-9.
These tables list the r-tuples Ag and the structures of G/S(G).
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TABLE 1
The finite groups with exactly twelve conjugacy classes

G As G/S(G)  Reference
C:x Cs (12,. 2 ,12) 1 (2.17) [25)
Cn (12,. I ,12) G (2.17) [25]
G, Gy 24,...,24,12, S8 ,8) C. (4.2) 2]
Cix3s (24,.?.,24, 1,12, 8,.7.,8) C3 (4.2) 125
Cix3, (24,.7.,24, 12,.1,12, 8,.7.,8) C @.1) [25]
G xDGCs 04, 2412, 12,8, 8) G @.1) [25]
C; X Dy (30,30,30, 15, o ,15,6,6,6) G 220 [25]
G x(Cy%; C) (36,36,18, o ,18,4,4) S, 4.2) [25]
Cox, Cs (36,36,18, 184, 4) b 4.2) 25
C: X As (36,36,36,12,12,12,9, o ,9) G (4.2) [25]
Cix, G, (36,36,18, .., 18,4,4) G 2.19) [25]
Cix, G (36,36,36,12,12,12,9, o ,9) G 4.2) [25]
(G:XC)X,C @2,21,. o ,21,2) G (2.18) [25]
G, %, Qs (48,48,24,24,24,12, 2 ,12,8,8,4) Dy 4.2) [25]
C; %2 Die (48,48,48,24,24,12,. T,12,8.8, 4) Dy (4.2) [25]
C>%, SDe (48,48,48,24,24,12, o1, 8,4) D, (4.2) [25]
S, X Do (60, 30,30,30,20,15,15,12,10, 10,6, 4) G @.2) [29]
Cix, Gy (72,72,18, BURTE W ,8) C. (4.2) [25]
SiX Ay (72,36,24,24,18,18,12,9,9,8,6,6) Cs 4.2) [25]
G X (C3%,C) (72,72,18, » ,18,8, o ,8) G, 4.2) {25
(CXC)C (84,28,...,28,3,3) G (2.19) [25]
(CiX Qo) X, G (96,96, 32,32, 16, 4 ,16,6, .T .,6) A, 4.2) [25]
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G Ac G/S(G) Reference
4 4
Hol(2'T:h, C,) (96,96,32,32,16,...,16,6,...,6) As (4.2) {25]
3
C3x, G (108,54,27,...,27,6,4,4) G (4.1) [25)
(G X CYx, Co (126,63,21,21,21,18,18,9,9,6,6,6) C 4.2) [25]
6
Cx(C3%; Q) (144,144, 18,18,16,16,8,....8) Qs 4.2)25)
6
Cixa (Coxa Cs)  (144,144,18,18,16,16,8, ..., 8) s 4.2) [25]
4 4
(C3X )%, Cs (168,56,28,...,28,24,8,6,.. . 6) C. (4.2) [29)
Cix, Oy (216,108,27,27,27,24,12,... 12,4, 4) Qs 4.2) [25)
6 5
Ci %, C, (222,37,...,37,6,...,6) Ce 4.2) [25)
5
0 (240,240,12,...,12,10,10,8,8,8) P (1.14)

@ (240,240,12,...,12,10,10,8,8,8) 3, (1.14)
PSL2,7) % C, (336,336,16,16, 14, .., 14,8,8,6,6) {1 (3.2) [25]
(Asx GYx,C: (360,180,24,18,15,15,15,12,12,9,6,4) G (2.20) [25]
Cixy 34 (384,128,32,32,32,16, 16, 16, 8,8,8,3) Cx % (114)

P x, Cs (384,128,32,32,32,16, 16, 16,8,8,8,3) CixiCo  (1.14)
P.x, G (384,128,32,24,16,16,16,16,6,6,6,6) Cix,Co  (1.14)
4
CiXy, As (960,192,96,16,16,12,...,12,8,5,5) As (4.2) [25]
s
C3%; Qe (1296,81,...,81,16,8,8,8,4,4) Qe @.5) [25]
4 4
Cix (Csx, Ci)  (1620,81,...,81,20,10,...,10,4,4) Cx.Co (4.8)[25)
Cix, s (1920,128,48,32,32,16,16,8,8,6,6,5) P (1.19)
5 4
i1%,SL(2,3) (2.904,121,...,121,24,6,...,6,4) SL(2,3) (4.5) [25)
&
Cix, (C:x,G)  (3240,81,81,40,10,10,8, ... ,8) Cxa G (4.14) [25)
4 4
PSL(2,19) (3420,20,19,19,10,...,10,9,...,9) {1} (1.13)
4
PSL(3,3) (5616,54,48,13,...,13,9,8,8,8,6) {1} (1.13)
Cix, As (5760,384,36,32,32,16,12,9,8,8,5,5) As (1.14)

%% SL(2,5) (43320,361,...,361,120,10, ..., 10,6,6,4) SL(2,5) (4.11) [25]

M:, (443520,384,36,32,16,12,11,11,8,7,7,5) {1} (1.13)
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TABLE 2
(1) The finite groups satisfying r(G) = 13 and B(G)>1

G A G/S(G) Reference
Cy%» Ds (40,40,20, .., 20,4,4) o @2) [25]
Ci X5y Dy (40, 40, 20,.?.,20,4,4) c 4.2) [25]
Coxs O (40.40,20, ..., 20,4,4) c @2) [25]
Cix G (100,50, 50,25, ,25,20,10,10,4,4) C. 4.2) [25)
Cix, (Cisx,Cy)  (120,60,60,40,20,20,15, .. ., 15,4, 4) s (4.2) [25]

(ii) The finite groups satisfying r(G) =13, (G)=1and 0= a(G)=4

G Ag G/S(G)  Reference
Cn a3, 13) 1 (1.16)
CrX; Gy {46,23,. 2 ,23,2) G (2.18) [29)
Cy % Cs (93,31, r, 31,3,3) G (2.19) [25]
Cix;Cs (148,37, ..., 37,4,4,4) (o (2.20) [29)
Ca%;Cs (205,41,.’7.,41,5,.7.,5) (o @.1) [25]

(iii) The finite groups satisfying r(G) =13, B(G) =1,5 = a(G) = 10 and $(G)solvable

G As G/S(G)  Reference
Cix,y 35 (150,50,." .,50,25,25,10,.".,10,3) 3. 4.2) [25)
G Ciy (253,23,23,11,.....,11) Cn (1.15)
Cax,Cs (258,43, o ,43,6,. T ,6) Cs 4.2) [25]
CaX, G G01,43,...,43,7,....7) G (4.5) [25)
Cu%;Cro (310,31, 2 ,31,10, 10) Co 4.14) [25}
Cix, M (400,50, 40,25, 16,16, 16, 10,8, . y ,8) M (1.14)
Cix, A, (324,81,81,54,27,12,9, o ,9,6) A, 4.2) [25)
Cax: G (328,41,...,41,8,....8) G @8) [25]
Cox,C ($33,37,....37,9,...,9) G @11) [25]
Cixy M (400,50, 40,25, 16, 16,16,10,8,.?4,8) M (1.14)
Cix, (Ci%,C)  (576,96,64,36,16,16,12,9,8, z ,8) Cix,Cy (1.14) [25]
Cix, (Cax,Cs)  (1053,81,81, 13,1, 13,9,.?.,9) Cox G (1.14)
CLx (Csxa Gy (4840121, o 121,40,10,10,8, ! ,8) Cx, G (4.14) [25]
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TABLE 3
(i) The finite groups satisfying r(G) = 14 and B(G)>2

G As G/S(G) Reference
G X D 62,.0..32,16,...,16,8.....8) D (1.16)
G, xSDe @2,.0.32,16,..,16,8,....8) D (1.16)
X Qu G2,...,32,16,...,16,8,....8) D. (1.16)
(Cex C)%a G (2,....32,16,...,16,8,...,8) D (1.16)
(G G- C. G2,...,32,16,...,16,8,....8) D, (1.16)
Cox», C. = G2,...,32,16,...16.8,....8) D. (1.16)
Co%», Cs G2...,32,16,.".,16,8,....8) D, (1.16)
Cix, G (32,.7.,32, 16,.?.,16,8,.?.,8) (o3 (1.16)
Cixn G @2,....32,16,..,16,8,....8) c (1.16)
Cix G (2,.0.32,16,..,16,8,...,8) G (1.16)
c- G 32,.0..32,16,...,16,8,...,8) c (1.16)
c.c G2,...,32,16,...,16,8,....8) a (1.16)
(Cox Cyx,, G (2,...32,16,...,16,8,....8) c (116)
(CoX C2)x,, G G2,...,32,16,..,16,8,...,8) c (L.16)
(CxCY . @2,.0.,32,16,...,16,8, ....8) c (L16)
CxSLR,3) @8,...,48,12,.".,12,8,8) As (1.14)
Cix,C (50,25,......,25,2) G @.18) [25]
Cixy Cs (294,49, o ,49,6,. y ,6) C {4.2) 251

(ii) The finite groups satisfying r(G) = 14, B(G)=2and 0= a(G) =4

G Ag G/S(G)  Reference
Cu aa,.....,14) 1 (1.16)
Cixa G (44,4422, ....,22,4,4) G @.19) [25]
CX(Cu %, Ca) (44,44,22,.....,22,4,4) G @.19) (25)
C X (Cis %, C3) (78,78,26,...,26,6,...,6) G 4.1) [25]

10
Cux;C, (164,41,.....,41,4,4,4) C (2.20) [25]
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(iii) The finite groups satisfying r(G) = 14, B(G)=2, 5 = a(G) = 10 and $(G) solvable

G Ac G/S(G)  Reference
Cs %o Mis (80, 80, 40, 40, 20, 20,20, 16, 16,8, ..., 8) CxGC (114
Co Xy M (80,80, 40,40, 20,20, 20,16, 16,8, ..., 8) CXC  (1L14)
Csx, (Co%a C) (80,80,40,20,. .,20,16, 16,8, . ....8) GxC (114
Coxn (Cex Ciyxa C3) (80,80,40,20,..,20,16,16,8, . .,8) CXC (L4
Cx(Cr%; C) @484, 14,14,12,. ., 12) G (1.14)
€%, Caa (34,84,14,14,12,.."..,12) G (1.14)
C2 5 (Cs %, Ds) (96,96,48,32,32,16,12,....,12,8,....8) Da (1.14)
C2 %5, (Cs %, Dy) (96,96,48,32,32,16,12,....,12,8,...,8) Da (1.14)
Cixs (Co% Q) (96,96,48,32,32,16,12,...,12,8,....,8) D (1.14)
Ci%, G (104,104,26, ..., 26,8, ..., 8) G 42) [25]
G X (Caxs Cy) (104, 104,26, .-, 26,8, ..., 8) G @2) [25]
Cix (Cux, Cy) (110,110,22,. ., 22,10, ., 10) G 42) [25]
Cix, (GiX Cy) (200,50, 50,40, 40, 25, 25,10, 10,8, ..., 8) GxC.  (48)[25)
(G:X C2)%, DG (240,80, 60, 48,30, 16, 15, 15,8, .. ,6) DG, (1.14)
Ci %, (C3%,C) (288,96,96,36,36,32,12,12,9,9,8,8,8,8) Cix, G, (1.18)
Cix, Cs (294,49, y ,49,6, f .,6) Cs “.2) [25]
Cixn G (294,49,...,49,6,....6) G @2) 251
Cixs (C:XS5) (300,50, .-,50,20,20,10, ..., 10, 12,6, 6) Du 42) [25]
C2x, Cs (392,49, .7.,49, 8, .T.,S) G {4.8) [25)
CaxsCuo @10,41,...,41,10,.".,10) Cu @.14) [25]
Cix, 3. (648,108,81,54,24,12,...,12,9,9,9,6) 5, (L.14)
Px,Cy, PICi=C  (1280,256,256.32, ...,32,5,....5) Cix G (114)
Cix, SLZ,5) (1920, 1920, 128, 128,16, ..., 16,10, ...,10,6,6) A (1.14)
G- As (1920,320,192, 128,16, .., 16,10,...,10,6,6)  As (1.14)
C %, (Cs%, G ©420,121,.".,121,20, 10,10, 10, 10,4, 4) Cx. G (48)[25)
2%, SL(2, 3) (4056, 169, .., 169,24.6,...,6,4) SL@,3) (4.5 [25)
2% (SL(2,3)- Co)  (13872,289, 2 ,289,48,8,8,8,6,6,4) SL(2,3)- G (4.8) [29]



Vol. 56, 1986 CONJUGACY CLASSES

TABLE 4
(1) The finite groups satisfying r(G) = 15 and B(G)>3
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G Ac G/S(G) Reference
13
Cix,Cs (54,27,..... ,27,2) G (2.18) [25]
(C:X C)%,Cs (54,27,......21,2) 3, (1.14)
10
Cix, Qs (648,81, .....,81,8,4,4,4) Qs (4.1) [25]
(it) The finite groups satisfying r(G) = 15, B(G)=3and 0= a(G)=4
G Ac G/S(G) Reference
15

Ci as,.....,15) 1 (1.16)
CiX D (42,42,42,21,...,21,6,6,6) G (2.20) [25)
Ciox, G (111,37,..... ,37,3,3) G 2.19) [25]
(G X C3) %, Gy (156,78,39,...,39,12,6,4,4) C. @.1) [25]
(PSL(2,7)X C)X, C>  (1008,504,48,24,24,21,21,21,18,12,12,9,8,8,6) (1.18)
(AsX Cy)- G (2160, 1180, 48,48,27,27,27,24,24,15,15,15,8,8,4) G, (2.20) [25]

(iii) The finite groups satisfying r(G) = 15, B(G) =3, 5 = a(G) = 10 and S(G) solvable

C: X Dy (24,4(.’.,24,12,.?.,12) C:
Cix Oy Q4,...,24,12,.. ., 12) c:
Cix 3, (30,.?.,30,15,.?.,15,10,.?.,10) G
G x Hol C; (60,60, 60, 15,15,15,12, ..., 12) (o
X (G C) (63,63,63,21,.‘.’.,21,9,.7.,9) G
Cx, Gy (63,63,63,21,..,21,9,."..9) G
Cix3, (712,72,72,24,24,24,12, ..., 12,9,9, 9) S,
Cix, Ds (72,72, 36, . f. ,36,18,18,12, .7. ,12,4) C;
C2%,, Ds (72,72,36, 2 ,36,18,18,12, .f‘, 12,4) G
Cix,, Qs (72,72, 36, 2 ,36,18,18,12, 2 ,12,4) C:
$:X Dia (84,42, L 28,21,21,21,14,14,14,12,6,4) c

(1.16)

(1.16)

4.2) [29]
@.2) [29]
4.2) [29]
@.2) [25]
@4.2) [29]
4.2) [29]
@.2) [25]
4.2) [25]

“2)25)
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G Ac G/S(G) Reference
X, C3 (108,54, 54,54,27,. .,27,12,12,12,6,6,6) c: @2) [29)
(C:x )%, Cs (126,63,42,42,42,21,21,18,18,14,14,9,9,6,6) G @2) 23]
C%, Dis (144,144,36,....,36,12,.".,12,8,8,8) D 42) [25)
C:x, SDie (144,144,36,...,36,12,....,12,8,8,8) D, 4.2) [25]
Ci%, Que (144,144,36, ..., 36,12, . ., 12,8,8,8) D, @2) [25]
C:x, D (216,108,54,54,27,27,24,12, ..., 12,6,6) D, @2) [25)
Cix G, (216,108,27,27,27,24,24,24,12,12,12,8,....8) G (1.14)
(G X Cis)%s G (234,117,39, ..,39,18,18,9,9, 6,6, 6) G @2) [25)
(C:x )%, G (360,90,45, ..., 45,40,10,8, ..., 8) G 438) [25]
Ca%;Cro (510,51,...,51,10,...,10) Co .10) [25)

TABLE 5
(i) The finite groups satisfying r(G) =16 and 8(G) >4

G Ac G/S(G) Reference
c a6, ..., 16) 1 (1.16)
Cix G, 36,....,16) G (1.16)
G X (Cix,Cy) (96,9,16,.....,16,6,...,6) G @1) [25]

(ii) The finite groups satisfying r(G) =16, (G)=4and 0= a(G)=4

G Ac G/S/(G) Reference
Cix Dy @0,...,40,20,.>.,20,8,."..8) G @.1) [25)
Cx(Cxx Cy) 40,...,40,20,...,20,8, .. ..8) G @.1) [25]
Civ%r G (52,52,26,.....,26,4,4) G (2.19) [25]
Cx(Caxs Cy) (52,52,26,......,26,4,4) G 2.19) [25}
CoX;Cs (58,29, ...,29,2) G 2.18) [25]
Cix, G, (196,49, ..,49,4,4,4) C (2.20) [25]
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(iii) The finite groups satisfying r(G) = 16, B(G) =4, 5 = a(G) = 10 and S(G) solvable

G

Ac

G/S(G) Reference

CiX Do

Do X Dy

(Csx C3) %, Cs

C:X(C %, Cy)
Ci X, G

G x(Cis % Gy)
Cisx, Cy,

G X (C2%,Cs)

(C3x Ci3)x, Cs
Cor %, Cs

G x(C5%, Q1)

Cix, (Cix, Cy)

C(;X,C9

C, X (Cﬁ X¢ DCs)

Cix (%, Gy)
Ca%;Cu

Cox (G %, Cy)
Cx (G, Cy)

Chx; DGy

(C3x C5)x, SL(2,3)

Cf:lx[ (G CY)

Ci % SL2,5)

@0,.".,40,20,...,20,8,...8)
(100,50, . .,50,25, .., 25,20,20,10, . .., 10,4
(120,60, 60, 30, 30, 30, 24, 20,20, 15, ..., 15,8, 6, 6)
(136,136,34,...,34.8,."..8)

(136,136,34, ...,34,8, ...,8)

(156, 156,26, ...,26,6, ..., 6)
(156,156,26,...,26.6,. .- . 6)

(160, 160,32, ....,32, 10, ..., 10)

8

(312,104,52,...,52,24,8,6,6,6,6)
(366,61,.....,61,6,...,6)
(400,400,50, .., 50,16,16,8, .. ., 8)
(400,400,50,..-.,50,16,16,8, ..., 8)
(576,64,...,64,9,..,9)
(600,600, 50, .., 50,24,24,12, ..., 12,8, ..., 8)
(600,600,50,...,50,24,24,12, ..., 12,8, ..., 8)
610,61,..,61,10,.. ., 10)

(1344, 192,192,192, 64,64, 12, .., 12,7,7)
(1344, 192, 192, 192, 64,64, 12, ..., 12,7,7)

10

(1452,121,..... ,121,12,6,6,4,4)
4 4 4
(2400, 800, 100, . . ., 100, 96,32, 16, ...,16,6,...,6)
6 6
(4732,169,...,169,28,14,...,14,4,4)

? 4
(100920,841, . ..,841,120,10,...,10,6,6,4)

C:

C:

Cs

G

G,

Ce

Cs

Cs

Cs

G

Qs

Q4

G

DC;
DG,
C
Cix, G
G x, G
DG,
SL(2,3)
G X, Gy

SL@2,5)

(1.14)
(4.2) [25]
(1.14)
4.2) [25]
(4.2) [25]
(1.14)
(1.14)
(4.2) 25]
(4.2) [25]
4.2) [25)
(4.2) [25]
4.2) [25)
4.2) [25]
(1.14)
(1.14)
(4.14) {25]
(1.14)
(1.14)
4.2) [25]
(1.14)
(4.14) 25}

(4.11) [25]
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TABLE 6
(i) The finite groups satisfying r(G) =17 and B(G)>5

@

(it) The finite groups satisfying r(G) =17, B(G)=5and 0= a(G) =4

G Ac G/S(G)  Reference
Cv a7, .17 1 (1.16)
Cux; Gy (62, 31,..’.5..,31,2) C (2.18) [25}
CoX;Cs (129,43,.....,43,3,3) G (2.19) [25]
Car %, Cs (305,61,......,61,5,5,5,5) Cs @.1) [25]
(AsX C)% G (600,300,300,40,30,25, . .,25,20,20,15,15,12,6,4) C: (2.20) [25]

(iii) The finite groups satisfying r(G) = 17, B(G) =5, 5= a(G) = 10 and S(G) solvable

G Ac G/S(G)  Reference
C>xs, Dy (56,56,28, ..., 28,4,4) c @2) [25]
C> s, Dy (56,56,28, .....,28,4,4) c @2) [25]
C%, 0 (56,56,28, ..., 28,4,4) c 2) [25]
(GXC)x: G (140,70,70,70,35, . ..,35,28, 14, 14,14, 4,4) C @2) [25)
Cix (Cux,C;)  (168,84,84,84,56,28,28,28,21, ..., 21,4,4) 5, @2) [25]
(GXC)xn G (210,105,105,35,...,35,30,30,15,...,15,6,6,6)  C @2) 25]
Cix, G, (294, 147, 147,49, .. ., 49,42, 14, 14,6,6,6,6) G @2) [25)
Cor % o 02,67, ...,67,6,....6) G @2) [25]
Cnx, Gy @97,71,.. . T, .. 7) G @5) [25]
Crx, G (584,73,...,73,8,....8) G @38) [25]
Crxs G 657,73,...,73,9,...,9) G @.11) [25]
Cn%; Cro 710,71,...,71,10,.. ., 10) Co (4.14) [25]
Cor%s Cur (37,67, 6T,11,....,11) Cu (115)

2%, SL(2, 5) (115320,961, ..., 961,120, 10, ..., 10,6, 6, 4) SL2,5)  (@.11)[25]
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G As G/S(G) Reference
10 7
Cix, G (648,81,..... ,81,8,...,8) Cs (4.8) [25)
(ii) The finite groups satisfying r(G) =18, B(G)=6and 0= a(G)=4
G Ac G/S(G) Reference
18
G X Cs as,..... ,18) 1 (1.16)
12
G (C3%,Cy) (54,54,54,27,... .. ,27,6,6,6) G (2.20) [25]
14
(GXC)x G (60,60,30, ..... ,30,4,4) G (2.19) [25]
14
CX((GXCyx;Cy)  (60,60,30,..... ,30,4,4) C (2.19) [25]
(G C)x, G (66,33,..... ,33,2) G (2.18) [25]
12
G X (Cox,C) (114,114,38, .. ... ,38,6,6,6,6) G @.1) [25]
12
(Csx Ci)xi Gy (204,102,51, ..... ,51,12,6,4,4) C, 4.1) [25]

(iii) The finite groups satisfying r(G) = 18, B(G)=6,5 = a(G) = 10 and S(G)solvable

G

As

G/S{G) Reference

Cex 34

C;x DG,

C: X (C5%,, Dy)

C: X (Cy Xy, Dy)

G X (G Xy Qs)

CX ((Cex GYX, G)
(Cs X CixX )%, G
CX, (CaX, Ca)
Coxa G

Cix, (C:x Cy)

CoxZ3x 3,

@36, ..

6 6
.,36,18,...,18,12, ...

(36, . ..

(8, ..

(8, ...

(48,...

(48,...

“48,...

8, ...

(48,

(72,72,36,...,36,24,...,24,18,18,12,...,12,8,8)

4 4 4
(72,72,36,...,36,24,...,24,18,18,12,...,12,8,8)

4

...,48,24,.....,24,8, ..

[ 6
,36,18,...,18,12,. ..

.12)

12)

)

(&3

X Cs

(4.2) [25)
“.2) [25]
(1.14)
(L.14)
(1.14)
(1.14)
(1.14)
(1.14)
(1.14)
(1.14)

(1.14)
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G Ac G/S(G) Reference
G X (C2x,C)) (108,108, 108,27, ...,27,12,..., 12) C. 42) [25)
Cix, C2 (108,54,.".,54,36,27,..., 27,18, ..., 18,12,6,4) c 42) [25)
(G x )%, G (120, 120,60, 60,30, ...,30,24,24,12,12,8, ... G @2) [25]
Cx(Csx C)xa C))  (120,120,60,60,30,..,30,24,24,12,12,8, . . G 2) [25)
G, X (C2x, Diw) (134, 144,72, 72, 48,48,24,24, 18, . 18,8, .. 5, (1.14)
Cox (Chxa (Ci%,C)) (144, 144,72,72,48,48,24,24, 18, . 18,8, .. 3, (1.14)
(Csx CYx, C, (180,90, 90,45, .. .., 45,20, 10, 10, 4, 4) o) @2) [25]
Gy % (Cuox, Ce) (228,228,38,..,38.6,.....,6) G (L.14)
CioXs C (228,228,38,...,38,6,......6) G (1.14)
Cix, (Cr%;C) (228, 144,96,96,96,48, . ., 48,9,9,9,8, ... 8) % @2) [25]
Cixa (C2x, Co) (228, 144,96,96,96,48, ..., 48,9,9,9,8, .. .,8) 5, 42) 125}
(CsX Cio)%» s (342,171,57, .. ., 57,18,18,9,9,6,6,6) G @2) [25]
(Csx Cxa (Cix C) (360,90,90,90,72,45,.-.,45,40,18,18,10,8,.. ,8)  G:xCi (1.14)
(Csx C3)x, O (360, 180, 180, 45, ..., 45, 40,20, ..., 20,4, 4) o (L14)
(Cs X Cir) %, G (408,204,51, " ,51,24,24,24,12,12,12,8,.....8) G (1.14)
Gy Ce @38,73,.....,73,6,....6) G @2) [25]
(Csx €)% Do (480, 240,96, 96, 96,48, 48,48, 15, ... 15,8, .. Do (L14)
(Cx CY%, Qs (600,300,75,..,75,24, 12, ..., 12,4,4) Q. (4.2) [25]
Cixp G (648,81, " ,81,8,.?.,8) G (4.8) [25]
Cix,Co 810,81,.".,81,10,...,10) Co  (418)[25
Cixr (Cr%a ) (900,450,75, .-.,75,36,18, ..., 18,4,4) DG (1.14)
(GXC)X DG (900,450,75,...,75,36,18,...,18,4,4) DG (114
(CxC)x,DC:  (1200,400,100,...,100,48,16,8, ..,8,6,6) DG  (L14)
i, SDis (1296162, .,162,81,81,81,36,18, ...,18,16,8,8,8,4) SDi  (L14)
Ci%1,SDis (1296, 162, ..., 162,81,81,81,36,18, ..., 18,16,8,8,8,4) SDi.  (L14)
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G Ac G/S(G)  Reference
Cix,, G (147,49, ..... ,49,3,3) G (2.19) [25]
(ii) The finite groups satisfying r(G) =19, B(G)=7and 0= a(G)=4
G Ac G/S(G)  Reference
Ci Qao,..... ,19) 1 (1.16)
17
(Csx C)x, Gy (70,35,..... ,35,2) G (2.18) [25]
Cix, G (147,49, ..... ,49,3,3) G (2.19) [25]
16
Cix,, G (147,49,..... ,49,3,3) G 2.19) [25]
15
Ca X, Cs (244,61,..... ,61,4,4,4) C (2.20) [25]
Cu X Cs (355,71,..... ,71,5,5,5,5) Cs 4.1) [25]

(iii) The finite groups satisfying r(G) = 19, B(G)=7,5 = a(G) = 10 and S(G) solvable

G Ac G/S(G)  Reference
Crox; G 474,79,.....,79,6,... ,6) G, (4.2) [25]
Coo %/ Cs (712,89,.....,89.8, .. .8) Ce (4.8) [25]
CooX;Cny (979,89,.?.,89,11,..1.0..,11) o (1.15)
Cix, DG (1500,375,125,......, 125,30, 15, 15,12, 6, 4, 4 DG {4.2) [25]
(Cix Cyx, SL(2,3)  (5400,675,225, o ,225,24,18,18,9,9,6,6,4) SL(2,3) (4.5) (25}
2%, SL(2,3) (6936,289, .. .., 289,24,6,6, 6,6, 4) SL(2,3) (4.5) [25]
Cox; (Cs %2 C) (14440, 361, .., 361,40, 10, 10,8, ..., 8) Cx G (4.14) [25]
Ch%, (SL(2,3)- C)  (25392,529,. 2 ,529,48,8,8,8,6,6,4) SL(2,3)- C.  (4.8) [25]
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(ii) The finite groups satisfying r(G) =20, B(G)=8and 0= a(G)=4

G Ac G/S(G) Reference
Cix Du (56,...,56,28,.....,28,8, .. 8) G @.1) [25]
CX (G % Co) (56,...,56,28,....,28,8,....8) G @.1) [25]
Coxs G (68,68,34, .. ..,34,4,4) G @.19) [25]
CiX(Cr%, C) (68,68,34, ..., 34, 4, 4) G @.19) [25]
Cox, Gy 4,37,....,37,2) G 2.18) [25]
(C2x C)x, Cs (156,52,.....,52,3,3) G 2.19) [25]
(CsX C)%, Ci (260,65, .- ..,65,4,4,4) G (2.20) [25]
C3 %, Qs (968,121,.....,121,8,4,4, 4) Os (4.1) [25]

(iii) The finite groups satisfying r(G) =20, B(G)=8,5 = a(G) = 10 and S(G) solvable

G Ac G/S(G) Reference
CxC @0,.."..,20) 1 (1.16)
CsX Dy (50,...,50,25,.."..,25,10,..., 10) C 4.2) 25)
CsX Aa (60,...,60,20,...,20,15,. ..., 15) G 4.2) [25)
DiwX D (140,70,...,70,35, .- ,35,28,20, 14, 14, 14, 10, 10, 4 C (4.2) [25]
Cix, Dy (192,192, 64, .. .,64,32,32, 16, ..., 16,6, 6) P (1.14)
Cix, DG (192,192, 64,...,64,32,32, 16, 26, 6,6) Ss (1.14)
Cx (C2%,C) (200,200,50, . ..., 50,8, ..., 8) o) @2) [25]
N (200,200,50,......,50,8, .. ,8) Cs (4.2) [25]
C2x, 3, (294,98, . ,98,49, 2 ,49,14, o ,14,3) 35 4.2) [25]
G X (Ci%,Co) (300,300,50, ...,50,12,.. .., 12) G (1.14)
Cix, Cz (300, 300, 50, o ,50,12,. " ,12) Cs (1.14)
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TABLE 9 (contd.)

G Ag G/S(G) Reference
C3x, Ds (392,98, 6 .,98,49,49,49,28,28, 14, 6 .,14,8,4) Dy (1.14)
(C3 X Cis) % Cs (456,152,776, . 12 .,76,24,8,6,6,6,6) Cs 4.2) [25])
(Csx Cir)%» Cs (680, 170,85, ... ,85,40,10,8, .-.,8) G 4.8) [25]
Cor %, Cs (776,97, . ....,97,8,....8) G .8) [25]
Cioi X; Cio (1010, 101, . w ., 101,10, 9 ,10) Cio (4.14) [25)
G, X (C3x, DC;) (1176, 1176,98, ... .98,24,24,12, ...,12,8,....8) DG, (1.14)
Cix, (Cs%, Co) (1176,1176,98, ..., 98,24,24,12, ...,12,8,....8) DG, (1.14)
C3 %, DG, (2028,169,...,169,12,6,6,4,4) DC; 42) [25]

8 4 4
(Cix C3)x, SL(2,3)  (4704,1568,196,...,196,96,32,16,...,16,6,...,6) SL(2,3) (1.14)

REMARK. In [25] Table 3, The following group is missing:

G Ag G/8(G)

4

5
Hol(2’Tsa;, Cs) (96,96,16,...,16,6,...,6) %G

2. Preliminaries

We will often use the preliminary lemmas of [25]. Also we utilize the following
lemmas:

LeEmMMA 1.1. Let N be a normal subgroup of G such that G = N X, T. Then:
(1) re(T)=r(T),
) r (nT)Z r(T) for each n €N.

Proof. (1) Set T = Ui_, Cly(h). We have U ;e T* = U;_, Clg (), and if
h; is conjugate to h; in G, then there exists nh € NT such that h{" = h;, with
n€EN and h€ET, therefore hi'h* =h'h'=[h,n]ENNT=1, ie.
Cly(h)=Clz(k) and i = j. Thus r6(T)=r(T).

(2) This result is an immediate consequence of the fact that nh~gn'h’,
n,n' €N, hh' €T, implies h ~rh'.



204 A. VERA LOPEZ AND J. VERA LOPEZ Isr. J. Math.

Lemma 1.2. If T is a nilpotent S.-subgroup of g, then G has a normal
m-complement if and only if r(T)=r(T). In particular, if m ={p} and P is a
Sylow p-subgroup of G, then G has a normal p-complement iff rc (P) = r(P).

PrOOF. The non-trivial implication follows from [8] corollary 12.5 (p. 102).

LEMMA 1.3. Let P be a Sylow p-subgroup of G. Then we have the following
affirmations:

(1) r6(Cs(P)) = rnaw)(Ca (P)).

) |Cle ()| = 4,(G) " |Clnoery(x)] - (1/] Co(x): Crowy(x)|) for each x€
Ng (P).

(3) If P is abelian, Ng(P)= P X, T and C5(P)=P X T, with T, = T, then we
have T, < Ng (P) and

rn6@)(Co (P)) = e ey(TT) + Inoey(P) + Fnoey(P*) - Tngeey(TT).
Furthermore, if P = Z(Ng (P)), then 1 (Ng (P)) = r(Ng(P))=|P|- r(T).

-PrROOF. These results are immediate consequences of a well-known theorem
of Burnside (cf. [7] Theorem 1.1, p. 240).

Remark. When P is an abelian group, the analysis of Anr) is developed
using Lemma 2.11 of [25].

LEmMMA 1.4. Let G be a group whose elements have primary power orders. Let
|G|=pi---pi be the decomposition in primes factors of the order of G, with
p: # p; for each i# j, and let P, be a Sylow p;-subgroup of G for every i =1,...,t.
Then G has exactly (| Z(P.)|— 1)/(| No(P.)/P,|) conjugacy classes of cardinality
[G/P.| for each i =1,...,t In particular, if the Sylow subgroups P; are abelian,
then

HG)=1+3 (| Z(B)] = DI Na (PP

ProoF. Let P €Syl,(G). The condition that G does not have elements
non-divisible by two primes numbers order implies that Cs (P) is a p-subgroup
of G and that if Ng(P)=Px, T, then T acts f.p.f. over P, that is, Ns(P)=
PX;T. Since Cs(P)< Ng(P) and Ng(P) is a Frobenius group of kernel P, it
follows that either Co(P)=P or P < Cs(P), consequently Co(P)= Z(P).
Moreover, for each x € Z(P)*, we have [Cly,@e(x)|=|x"|=|T|, so

16 (Z(P)) = 16(Co (P) = rnon(Ce (P)) = 1+ (| Z(P)] = 1)/| N (P)/ P,
but Cls ()N Z(P)* #@ iff P* = Cs(y) for some g € G, that is, if |Co (y)|=
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p® =|P|. Therefore rs (Z(P))—1= (| Z(P)| —1)/(| N6 (P)/P]) is the number of
conjugacy classes of elements of G whose cardinality is |G |/p°.

ExaMrLEs. (1) By observing the orders of elements of As, it is immediate that
NAS(CS) = D](), NAS(C:;) = 23 and NAS(Ci) == A4. Thel’l, if ‘Pl , = 5, 1P2, =3 and
| P| = 4, we have

r(As)=1+G—1/(5:2/5)+ (3-1)/(3-2/3)+ (4 — 1)/(4-3/4)
=5.

(2) Set G =PSL(2,7). Then we have Ng(C))= C;%;Cs, Ng(C;)=3, and
Ng (Dg)= Dy, s0 G has

(7—1)/(7-3/7) = 2 conjugacy classes of cardinality 168/7 =24,

(2—1)/(8/8) =1 conjugacy classes of cardinality 168/8 =21,

(3—1)/(6/3) = 1 conjugacy classes of cardinality 168/3 = 56.

(3) Consider the group G = C;x, As with A; acting transitively over C3.
Then Ng(Cs) = Dio, N6 (C3) =3, and if P is a Sylow 2-subgroup of G, then we
have Ng(P)=PX,Cs;= C3X,A,. Thus G has

(5—1)/(5-2/5) =2 conjugacy classes of cardinality | G|/5,

(3—1)/(6/3) =1 conjugacy classes of cardinality | G|/3,

(4—-1)/(2°-3/2°) =1 conjugacy classes of cardinality | G|/2°.

Assume the hypothesis of Lemma 1.4; in general, non-abelian Sylow sub-
groups can exist. Now if x € G* and o(x) = p*, with p prime, then Cs(x)is a
p-group, so there exists P €Syl,(G) such that Cg(x)= P. Consequently
| Co(x)|=|Cr(x)| and |Clg(x)|=|Clp(x)|-|G/P|, that is, the cardinal of a
conjugacy class of G which is different from | G/P| depends only on As. Thus,
the possible values of the tuple Ag are bounded if we know previously Ap, when
P is any Sylow subgroup of G. In general, we will write

1G)=1+ 3, 1o(Z(PY)+ 3, rt(P. - Z(P)
in which we define r&(P. — Z(P.)) = ro (P, — Z(P)))— w.p, With

we={Cla(g)| Cla(g) N Z(P) # D = Cla (g) N (P. ~ Z(P)},

that is,

HG)=1+ 3 (1Z(B)] = DI(INa(PYPI) + 3, r4(P. - Z(P))

Naturally rg (P, — Z(P,))= rp(P, — Z(P,)).
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ExampLEs. (1) Consider the group G =PSL(2,7). Let P=D; a Sylow
2-subgroup of G. Then Ay =(8,8,4,4,4), so Aﬁz_z(,,s, =(4,4,4) and we have

168 =1+ 168/8 + 168/7 + 168/3 + 2 7-3-8/2™ with 2™ =4
=1

for each i, consequently s =1 and Apsio7 = (168,8,7,7,4,3).
(2) Consider the group G = M, = PGL*(2,9), which is the unique extension
of PSL(2,9) by C, with a 2-Sylow of the type SD,c. We have

Nu(Cs)=CsX;Cyy Npp(C3)=C5%;Qs and  Np,(SDis) =SDy,

therefore M, has a unique conjugacy class of elements of order 5, a unique
conjugacy class of elements of order 3 and a unique conjugacy class of elements
of order 2 that are central in a 2-Sylow of M,. We have

SD g

ASD|6~Z(SD|¢<)) = (8’ 87 87 4),
so we consider the equations:

720 = 1+720/16 +720/9 +720/5+9:5-2- £, + 9-5-4-1,,
M

HG)=4+1+t.

(1) implies 5=1,+21,, hence (t,)€{(1,2),(3,1)} and the cardinals of the
centralizers of the elements of these possible classes are (8,4,4) and (8,8,8,4),
being r(G) =7 or 8, respectively. On the other hand, A,, = (360,9,9,8,5,5,4),
hence r(Ms) =2-s + (7 — s)/2 with s =3 (cf. [25] Lemma 2.9), therefore r(M;)=
8 and necessarily r(M,)= 8. Thus

Am, = ((720,16,9,5), (8,8, 8,4)) = (720, 16,9,8,8,8,5,4).

(3) Let us consider the group G = C3X, As with As acting transitively over
C%, let P €Syl(G), then Af 4, =(16,.".,16). Now observing the equations

16 - 60 = 1 +960/5 +960/5 + 960/3 + 960/2° + (960/16) - ¢

and
r(G)=5+¢

it follows that + =4 and As = (960,64, 16,16,16,16,5,5,3).
LemMMAa 1.5. Set G =PIL(2,9). Then we have
¢ = (1440,48, 40,32,18, 16, 16, 10, 10, 8, 8, 8, 6).
r(G)=13, B(G)=1, G/S(G)=C3, S(G)= A, and a(G)=8.
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PrOOF. We know that G/A.=C3 and that G has exactly three normal
subgroups of index 2: N, =23, N,=PGL(2,9) and N;= M,. Besides

An, = (720,48, 48, 18,18, 16,8,8, 6,6, 5),
A, = (720,20, 16,10, 10, 10, 10,9, 8, 8, 8),
An.=(720,16,9,8,8,8,5, 4).

Obviously, r(G)=rg(S(G))+ 16 (N, = S(G))+ ro (N.— S(G)) + rc (N: — S(G))
and we have r(G)=2s; +(r(N;)—s)/2, where s; is the number of conjugacy
classes of N; fixed by the automorphism ¢: N, — N; defined by ¢, (x) = x* for
each x € N, with g an element of G such that g = Ni(g).

We have N;=S(N)U(N,—S(N))), A;’Nl, =(720,18,18,16,8,5) and
A::-sw.) =(48,48,8,6,6),s0 s, =5 and r(G)€{13,16,19,22}. In [16] it is proved
that s, = 5 and now it is immediate to conclude that A, = (1440, 32, 19, 16, 10),
AR,-sy = (48,16,6), AR,-sc)=(8,8) and AR,_s, = (40, 10,8). Thus we obtain

Ac =(1440,48,40,32,18,16,16,10,10,8,8,8,6) and a(G)=13—-5=8.

Lemma 1.6. (1) If G is a group such that PSL(3,4) < G = Aut(PSL(3,4)), then
r(G)z14.

(2) Arcrean =(20160,24,20,12,.7.,12,11,10,.%.,10), r(PGL(2,11)) =13 and
a(G)=6.

PrOOF. These results rely on simple matrix calculations and using the tuples
Apsii = (20160,64,16,16,16,9,7,7,5,5), Apsieany = (660,12,11,11,6,6,5,5) and
Lemma 2.9(iii} and (iv) from {25].

Let I be the family of all finite nilpotent groups. We define ¢, =®,; N T.

LemmA 1.7.
g =2T,U2Tsa, [ 1=i =3}UQRTe [1=i =2 U2Td [1=is2).

Proor. Cf. [24].

In Lemmas 2.18, 2.19 and 2.20 from [25], all finite groups satisfying 1=
a(G)=3 are classified. In Lemma 4.1 from [25], we obtain the finite groups
satisfying o (G) =4 and with S(G) solvable. In the following, we will obtain all
finite groups satisfying o (G)=4.

LEMMA 1.8. Let G be a finite group with S(G) non-solvable and satisfying
a(G)=4. Then either G =PGL(2,7) or G =(PSL(2,7)X H)X,C, with
PSL(2,7)C; = PGL(2,7) and Hx, C, = Hx,C,, being r(G)=6+3|H|.
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PrOOF. We have r(G/S(G)=S. If r(G/S(G))=5=a(G)+1, then
| Cs(x)| =] Cs(x)]| for each x € G — S(G) and S(G) is solvable by Lemma 2.3
from (25], that is impossible.

If r(G/S(G))=4, then G/S(G) is isomorphic to one of the groups C,, C3,
D,,, and A..

Suppose G/S(G)= G =(a)=C,. Then

a(G)=4=15(aS(G))+ 1 (a”'S(G)) + rs(a’S(G))

forces that rg(aS(G)) =1, hence Cs(a)=(a) is isomorphic to C, and S(G) is
solvable, impossible.
Suppose G = () x{d,) = C3. Then

4=r:(a,S(G))+ rs(a:S(G)) + ro (@1a,S(G))

implies that r(aS(G)) =1 for some a €{a,, a,, a:a,}, hence | C(a)| =4 and if
P is a 2-Sylow subgroup of G, then there is (b) < P such that P/(b)= C,. We
have o(b)=2. hence b>€ S(G) and S(G) has cyclic Sylow’s 2-subgroups, so
S(G) is solvable, impossible.

Assume G =(a)x,(b)= Dy, Then
4=r15(aS(G)) +rs(a’S(G))+ rs (bS(G))

and we have r; (aS(G)) =1, so Cs(a) ={a) = Csacts {.p.f. over S(G), therefore
S(G) is solvable, impossible.

If G = (a,, @)%, (b) = A, then 15 (bS(G)) = 1, hence Cs(b)= C;and S(G) s
solvable impossible. Thus r(G) =3 and G is isomorphic to one of the following
groups: X, G;, or C,.

If G=(a)x,(b)=3, then 4=rG(aS(G))+rs(bS(G)) and S(G) non-
solvable implies 16 (aS(G)) =2 = rs (bS(G)), hence | C (b)| = 4 and again S(G)
has cyclic 2-Sylow, that is impossible.

It G =(b)=C,, then r;(bS(G))=2 and A, = (6,6), hence Lemma 2.13(ii)
from [25] implies that S(G) is solvable.

Thus we conclude that G/S(G) is isomorphic to C,. If there exists g € G —
S(G) such that o(g)=2° and | C5(g)| =2" - m with n =3, then G has sectional
range at most 4 and necessarily either G=PSL2,7) or G=
(PSL(2,7) X H)X, C; (cf. [18]). Assume that G has sectional range greater than
or equal to 5, and let g be a 2-element in G — S(G). Now, we consider the
equation:

12=1/2A,+ 172+ 1/2X5+1/2A, with A; = (2A4,...,20).
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If 2A, = 8, then A s, = (8,8, 8, 8), impossible, hence 2A, = 6. If 2A, =12, then
1/2=1/6+3/12, impossible too, hence 2A;=6 and A, =(24,8,6,6) or
(12,12,6,6), therefore | Cs(g)| =2" - m with n =3, which is impossible.

REMARKs. (1) If A is a non-abelian simple normal subgroup of G and
suppose that G =(A X H)X,C,=(A x H)x, (b) with HC,= HXx,C, and
AGC, # A X G, then a(G)= a(AG,) and r(G)=2s+(r(A)|H| - s5)/2, where s
is the number of conjugate classes Cl, (a) of A such that Cl, (a)’ =Cl, (a), i.e.
s = a(AG,) (it is an immediate consequence of [25] Lemma 2.9).

(2) If G/S(G)=(g)=C,, with p prime, then we have a(G)=s-(p—1),
where s is the number of conjugacy classes of G fixed by the automorphism
¢: S(G)— S(G)defined by (x) = x* for each x € S(G). In particular, a(G) =
s, in case p =2.

LEmMA 19. Let V be a vector space over Z, of dimension n and let
f € Aut, (V) be such that f* =1 for some t EN. Then |Cy(f)| = p*, with e a
natural number satisfying e = n/m = n/p’, where m is the degree of the minimal
polynomial of f over Z,. In particular, if p =2 and o(f) =2, then |C, (f)| = 2" if
n =2k, and |Cy(f)|=2"" if n =2k +1 for some natural number k.

Proor. We know that there exist f-invariable subspaces V;,..., V, of V and
polynomials q,(x),...,q.(x) € Z,[x]suchthat V=V, --- P V,, g:(x) divides
gi+1(x) for each i =1,...,s—1, ¢,(x) is the minimal polynomial of f, ¢ (x)=
pol. min.(fiv,) and q,(x)g.(x)- - - g,(x) is the characteristic polynomial of f. As f
is a root of the polynomial x?'— 1 = (x — 1)”, the minimal polynomial pol. min.(f)
divides (x — 1Y, so m = p".

Let us consider the p-group G =Hol(V,(f)). We have V, <G for each i,
hence V,NZ(G)#1 and therefore | Cv(f)|= p for every i. In consequence
|Cv ()| = p°. Besides

1 =degr(qi(x))=---=degr(q.(x))=m=p’
and
degr.(q:,)+- - +degr.(q.,)=n,

hence n =s-degr.(q,)=sm, ie. s=n/m.

ExampLE. Suppose f € Aut(C3) and o(f) =3, then | Cxi(f)| =3¢, with e =
4/3, s0 e =2 and | Cus(f)| = 3%

Lemma 1.10.  Let G be a group with S(G) abelian and let x € G — S(G). Put
G = G/S(G). Then rs(xS(G))Z 0(x)-|Cs (x)N S(G)|/| Cs (%)].
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Proor. Let Clg(xz;), j=1,...,t be the conjugacy classes of elements of G
which have non-empty intersection with xS(G). Then t=r;(xS(G)) and
1/|Cs (%) === 1/| C5 (x2;)]| (cf. [25] Lemma 2.1(ii)). Moreover, 0(%Z;) = o(X)
and C5(xz;) N S(G) = Cs(x) N S(G), because S(G) is an abelian group, there-
fore

|Cs(xz))|Z 0(%)|Co(x)NS(G)|  for every j
and consequently ¢ = o(%)-|Cs(x) N S(G)|/| Cs(%)|.

Lemma 1.10 is generaily used with Lemma 1.9, fixing the possible values of
16 (xS(G)), then the cardinal of Cs(x)N S(G) is bounded, and if o(X) is the
power of a prime number p, the situations that originate from fixing the possible
orders of Co(x)N O,(S(G)) (= Cs(x)N S(G)) are now analyzed.

LemMa 1.11. Let G be a finite group and let S, ..., S, be normal sets of G.
Then

n

rG(U s,.>= - > rG( N Sik)(—l)'*‘.
i=1 t= =h<--<hh=n k=1

Proor. This result follows immediately from an inductive process over n and
from the fact that rs(S; U S5) = r6 (S1) + 16 (S2) ~ 16 (SN S,).
LemMmA 1.12. Let G be a group such that S(G) is abelian. Set
G =G/S(G)=Cls(®)U---UClg(%,) and Clg(%)={%.,...,%.}.
Then S; = (Cs(x:,) NV S(G)U - - - U((Co(x:,) N S(G)) is a normal set in G and

) /1615(6).

ProOF. Let g be an element of G and set iﬁ =X,, then xf, = x, - z for some
z € S(G) and (Cs(x)NS(G)) = Co(x,2)N S(G)= Cs(x,)N S(G). There-
fore S, is a normal set in G. Besides, if z € S(G)— U, S, then z* = z* with
a,b € G—S(G)if and only if z € C5(ab™')N S(G), s0 ab™' =1 and aS(G) =
bS(G). Therefore |Clg(z)| =|G/S(G)| and thus we get the desired formula.

r(G)=a(G)+rG<iL:Jl Si)+<lS(G)ﬁ~ .L:Jn S

Lemmas 1.11 and 1.12 are generally used to determine r(G), once the value of
a(G) has been fixed.

LemMA 1.13. Let G be a finite group such that S(G) is not solvable and
B(G)=r(G)—j with 1=j=11. Then G is isomorphic to one of the following
groups: As, As, A7, 25, 25, Agx Cz, PSL(2, 7))( Cz, PSL(2, 7), PGL(2, 7), Mg,
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PGL(2,9), SL(2, 8), PI'L(2, 8), PSL(2, 11), PSL(2, 13), PSL(2, 17), PSL(3, 4), My,
SZ(S), (A5 X C3) Xa Cz with AsCz = 25 and C]CZ = 23, Mzz, PSL(3, 3), and
PSL(2, 19).

ProOF. We’ll reason in a similar way as in Theorem 3.2 of [25].
If S$(G)=G, then G is completely reducible, hence G =
G, X - X G, X Z(G) with the G; simple non-abelian groups. Therefore

51Z(G)| = (s +|Z(G)| - 1) = r(G)~ B(G)=j =11

and necessarily s = 1 and | Z(G)| = 2. Thus either G € {As X C,, PSL(2,7) x C}}
or G is a simple group with r(G) = 12, hence from [1], G is isomorphic to one of
the following groups: As, PSL(2,7), As, PSL(2,11), A,, PSL(2,13), SL(2,8),
PSL(3,4), M., Sz(8), PSL(2,17), My, PSL(3,3), PSL(2,19).

Now we can suppose S(G)< G, that is, a(G) = 1. Further, we deduce from
Lemma 2.18 of [25] that a(G) = 3. If a(G) = 3, then Lemma 2.20 of [25] implies
that G is isomorphic to one of the following groups: M, 25, (AsX G;)X, C,.

If a(G)=4, then it follows from Lemma 1.8 that G =PGL(2,7). Suppose
a(G)=5. We have 38(G) + a(G) = 11 from Lemma 3.1 of [25],s0 B(G)=1or
2. If B(G)=2, then r(G)=11+2=13. Let L, # L, be the minimal normal
subgroups of G, then S(G)=L,x L,. If L, and L, are not solvable, then

16 (S(G)Z 1+ re(L¥) + rg(LY)+ 16 (LY) 1o (LY) Z1+3+3+33 =16,

but a(G)=35 implies r6 (S(G)) = 13-5 =8, which is impossible. Thus, L, = C,
for some prime p and L, is non-solvable and isomorphic to A X - “*X A with A
a non-abelian simple group. Reasoning as above, we now have r;(S(G))=
1+1+42-r5(L3). If e Z2, then A X A has elements of orders 1, 2, pi, p., 2p,
2p,, p1 p2, where p, # p, are two odd prime factors of | A |, thus r; (L%) =7, that
is impossible. Therefore e =1 and L,=A is a simple group. We have
21+r5(LY))=13-5=8, so rs(L%)=3 and |{o(g)|gE€L%}|=3. Conse-
quently L,=As by Lemma 2.12 of [25]. Besides, L,= Cs(L.). Suppose
Cs(L;)=L,, then G/L,=Aut(L,)=3;, hence G/S(G)=C,, and rs(L*)=
(p* —1)/2, therefore (p'—1)/2=1, and necessarily G =(C; X As)X, C, being
a(G) =3, impossible. Thus we can suppose L; < Cs(L,) and G/S(G)# C,. By
considering the different orders of elements in $(G) = C, X Aj, it follows that
16(S(G))=8 and a(G)=5. Moreover, if x € Cs(L,)— S(G), then every ele-
ment of As is centralized by x, so xS(G) has elements of, at least, three different
orders, hence rs(xS(G))=3 and consequently r(G/S(G))=4 (otherwise,
a(G)=rs(xS(G))+ 2. 16 (x:S(G)) with s Z3 implies a(G)=3+1+1+1=6,
impossible). If r(G/S(G))=4, then there exists y € G —S(G) such that
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16 (yS(G))=1, hence |Cs(y)|€1{2,3,4,5} and necessarily S(G) is solvable,
impossible. If G/S(G)= (%)= C;, then a(G)=2"-r;(xS(G)) = 6, impossible.
Finally, if G/S(G)=(a)X,(b)=S., then Co(L;)=S(G){a) and rs(bS(G))=
2, hence | Cs (b)| =2 or 4 and S(G) is solvable. Thus B(G)=1and r(G)=12.
Set S(G)=A x---X A, with A a non-abelian simple group. As a(G)Z5, we
have rc (S(G))=7, hence [{o(g)|g € S(G)}| =7 and this implies that ¢ =2. If
e =2 and p, # p, are two odd prime numbers, divisors of | A |, then S(G) has
elements of order 1, 2, pi, ps, 2p1, 2ps, pip», hence 16 (S(G))=7 and a(G) =5.
Moreover, necessarily |{0(g)| g € A*}| =3, 50 A = As. We have C5(S(G)) =1,
because B(G)=1 and also

S(G)<G=Aut(S(G))= Aut(As)~ 2, =35~ 3, = (s X 25) X, G,

being Aut(As X Asy=C,~ C,= Ds. If G/Ai=C,, then r(G)=2s5 + (25~ 5)/2
and 2 divides | As[°, so s =2, but s =1 (mod 2), hence s =3 and r(G)= 6+ 11 =
17, that is impossible. If |G/S(G)| =4 or G/S(G)=Ds, then there exists
y € G — S(G) such that 75 (yS(G)) = 1, hence | Cs (y)| = 4 and S(G) is solvable,
impossible. Thus, necessarily $(G)= A is a non-abelian simple group, B(G) =
1, Cs(A)=1and A <G = Aut(A). Further, r(G)=12 and a(G)=Z5.

If a(G)=7, then rs(S(G))=5, hence |{o(g)| g € A}|=5 and necessarily
A €{A;,PSL(2,7), As, SL(2,8)}. We have Aut(As)=2s, Aut(As)=PI'L(2,9),
Aut(PSL(2,7))=PGL(2,7) and Aut(SL(2,8))=PI'L(2,8), and the possible
groups that appear here satisfy either r(G)>12 or a(G)<7. Therefore
a(G)€{5,6} and consequently r(G/S(G))=7.

If r(G/S(G))=7=a(G)+1, then | Cs(x)|=| Cs (x)| for each x € G — S(G)
and Lemma 2.3 of [25] yields that S$(G) is abelian, impossible.

If r(G/S(G))=S5 or 6, then, at least, there are x,y € G — S(G) such that
16 (xS(G)) = 1= rs(yS(G)) and % does not conjugate with y in G. Now, from an
inspection of the tuples Ag of the groups with 5 or 6 conjugate classes, we
deduce from Lemma 2.13 of [25] that S(G) is solvable, which is impossible. Thus
we can suppose that G/S(G) is isomorphic to one of the following groups: C,,
G, 35, Gy, GX G, Dyg and A,

If G/S(G)= A, we have a(G)=rs(aS(G))+ rs(bS(G)) + rs(b7'S(G)) =6
with 0(@)=2 and o(b) =3, hence r; (bS(G)) =2, 50 | Cs(b)| =3 or 6 and S(G)
is solvable by Lemma 2.13 (cf. [25]). Similarly, the case G = Dy, cannot arise
here.

Suppose | G| =4, then there exists b € G — S(G) such that r(bS(G)) =2,
hence A, = (8,8) and G has sectional rank at most 4. Now (8] and Lemmas 1.5
and 1.6 imply that there is not any group in this case.
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TaBLE 10
G/S(G) G r(G)
C Ciox(Hx; () r=15+5|H|
Csx (HX, Cy)= Cs X (HX, (b)) with h® =h™' VhEH r=15+5|H]
G Csx (Y %,Cy) r=5-G+(Y[-1)/3)
3, G X (C‘;x)‘ 23) =X ((Xl, )H,Xz, )’2>XA (a, b)) r=20, B(G) =4
with x{=y, yi=xy =y, x/=x,i=1.2
C;X DG, "(Xl, )’|,X2, )’Z)XA (<a>><A (b>) with r =20, B(G)=4
=Y y. Xiyi = y., X.~x.,1——12
C;X,\ (ny/‘C2) (x.,x;)x ((a)X,(b)) Wlfh r=39, B(G)=2
X;—Xz, xz—-X1 xz y Xl—Xl, X2= X1 xz
Ci%, (C3XfC2) (x1, X2) X (a1, G2) X, (b)) with r=39, p(G)=2
XM=y, xR =, X2 =x1x0, V=, x5 =x ks
C3%x Za = (X1, Xz, X3) Xa (@) %4 (b)) with r=35, B(G)=2
xi=x, xi=xs, x5= 23 x50, xP =27, x3= 0, x3=x3' x5
CZX(C2XA (Cx; Gy = G X ({x, y) X ({a)x, (b)) =18, B(G)=3
with x* =y, y" =xy, x"=x, y" =xy
Co X (C3xx (C3%: C)) = G x ({x, y) Xa (@3, az) X, (b)) r=18, g(G)=3
with x“ =x, y“ =y, x2=y, y2=xy, x"=1x, y'=xy
(C:x G)x, G r=15, B(G):4
C, (Cisx H)x, Cs = ({x) X H)X, (@) with x* =x™"' r=18+15(|H|-1)/4

and H(a)= HX;(a)
Cx(Csx HYyx, Cy=
and H(a)= HX, (a)
(CsXH)XACs ((x)xH)XA {a) with x* =x"
Cu(a®)=1 and h*=hVheH

G X ((x) X H)X, {a) with x* =x~"' r=16+10(|H|-1)

r=16+10(| H|-1)/4

& G X (Cs%x Dy) = Gy X ((x) X, (@) Xa (b)) with x* =x7", x" =x r=18, B(G) =4
CZX(CJXA Du)= CZX(<x)XA ((a)XA<b))) with x° =x, x® =x"r= 18, B(G)=4

CZX(CBXA Ox)= sz((x>xA ((a)x)\(b))) with x% = X, x" = x" r= 18, B(G)=4
Ci%, Co={a)x, (b) with a® =a”" r=18, B(G)=4
G Xa (C4XAC4)=<X)XA ((a)x)\ (b)) r= 18, ﬁ(G)=4
witha"=a', x"=x", x"=x

(G X Cox C) %2 Ca = ((x) X {a) X (b)) Xx {¢) r=18, B(G)=4
witha®=a ', x*=x"", x"=x

G Xx ((CoX C)xa G) = (x)x, (({a) X (b)) % {c)) r=18, B(G)=4
with a=ab, b =b, x"=x"', x =x, x" =x

D2 X 25 r=24, ﬂ(G)=2
Dz X Dy r=28, ﬁ(G) =2
(C:X/Cz)xDu r=30, p(G)=2
(C3 X Cn X CJ)XA Cz = (<XI> X (Xz) X (Xa))x). (al, az) with r= 39, ﬂ(G) =3
Xf=a, x3=x3", x5 = x5, xP =, x5 = x, x52= x5

(Ca x Cs) X, Ci= ((Xl,xz, x3)X<x4))xA (@, az) r=48, (G)=6
with x¥1=x,, x3i=x;', xD=x3", x{'=x3",

X|2"X|‘,XZ = X2, x3? = X3, X=Xa

Cixy (C¢X Cz) (xl,xz) Xy ((a,)x(az)) with r=18, p(G)=3
x. —11 N X2 —Xz s x. = X1, X2 —xz

C:X 23X 2, r=18, B(G)=3
CiX Do r=16, p(G)=2
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G/S(G)

G

H(G)

Dl(l

A,
G

Qs

D,

D,
Hol Cs

%, G

3.

As

G

(Cs X C3) x5 C% = ((x1) X (X2, x3}) X, (@1, a2) with
xf=x, x0=x3", =230 x=al, X2 =y, x92= x5
(G X C3) %2 C3 = ({(x1) X (X2, X3)) X {1, @2} with

-1 -1 -1 -1
Xt =, X3l=x7, X3 =X5, X12=X1, X22 =Xz, X31= X3

(G % C;)XADIO = (<x> X (Yl, ey )’4>)XA (a)x; <b>) with
X =x X" =x"", yi=y, YI= Y3, ¥5= Y4, Yi = N1Y2YsYa,
YI= Y, Y2 = YiYaYays, Y5=Ya Yi= s

G X S1L(2,3)

(Cs X H)x, Qs = ((x) X H)X, {a, b) with x* =x"",
x* =x and HQs = H X,Qs

CixaDs=(x,y) X ({a)*x (b))
with x* =y, y*=x"", x"=x, y" = y_l

GXA (C7X[C3) = (-XI,...,XG)XA ((a)X,(b))

With x{ = Xiet, X6 = X1 Xey X{ = X1, X3 = Xa,

X0=Xs, XS=Xi-" Xe, XO= X2, XO= X4

CrXa (G Ga)=(xy, . .., Xy Xa (@) X (b))

with X7 = x2, X3 = X3, X3= XXz, X3 = X5, X5 = Xe, X6 = XaXs,
X=X, X3= X, X3= XaXs, XO= Xa, X5 = X, Xo = XsXe

C; X Za = (x4, X2, X3) X ((au, az) Xa «b)x,\ (C))

with al=a,, a3 =aia;, ai=a,, a;=a\a;, b°=b"'
b’=1,c*=14ai=1,i=12 xl'=x, x5'=x7",
X =x3h xn=xy" X2 =a, x2=x5, X7 =x,,
X=X Xo=xy, x5 = 7, X5= x5, x5=x3"

C3X, SL(2,5) = (X1, X2, X3, Xa) Xa {a, b, ¢) with a’ = b’ = ¢’ =1,
(@ab¥=c,a°=a, b =b, x{=x: X3=x3, X3= X,

xi= X1 X2X3X4, X‘:= XtX2, X;z Xt, x§= X2X3Xa, x«” = XiX3

C;- A5 the only perfect extension of As by C3

which admits neither complement nor supplement

C5 As = (X1, X2, X3, X4, X5, ¢, d) with > =1=d°, {x,,...,x5)= C3,
(cd) = X1, X{= X3, X5= X3, X5=Xs, X§ = X1, X5 = Xs,

XY= X3, X5 =200, X5 = Xoy X4 = XaXoXaXaks, X5 = Xa

(C';X H)x, Co = ({1, y1, X2, y2) X H) X, (@) with
Xi=y, yi= Xy, i = 1,2, H(a)= HX,(a)

(Csx Cax D)X, Co = ({x) X (y,z) x D)X, (a) with D=1 or H,

x*=x"", y* =2 2" =yz, D{a)= D %;{a)

r=51, B(G)=3

r=58, B(G)=3

r=18, B(G)=2

r=14, B(G)=3

r=13+5(/H|-1)8

r=20, g(G)=1

r=16, B(G)=1

r=16, (G)=3

r=14, B(G)=1

r=14, B(G)=2

r=14, B(G)=1

r=16+8(/H|-1)/3

r=14+(10|D|-4)3
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G/S(G)

G

r(G)

D

DG

DIH

Cix, G

Ci%;Cy

c; X, Q4
PSL(2,7)
C;

016

SD6

G x (H %, Cy)
Hx,Ci,= HX, {a) with Cy(a®)= H and
a, a*, a’ acting f.p.f. over H

CiXa (CoxXa D) = (1, x2) X4 ({) X (@, b))
witha*=1=b,a"=a",c"=c¢ c"=c",

XP= X1, X5= XiXa, Xi= X2, X5= XiXz, X1 = X1y X3 = Xa
Cix, (G:XaDy)= (x1, X2) X ({¢) X4 (@, b)) with
at=1=ba’=a',c’=c', ¢ =c xi=x,

X3= X2, X0 = X2, X5= XiXz, X=Xy, X5 = X1Xa

CgXA (C3 Xa Qx)= (xi, X2) X, (<C>XA (a, b)) with
c“=c"ct=cat=a", xi=x, xi=xx,

X$= X2, X5= XXz, XIS Xy, X5= Xz

C:x (H%; DC3)

Hx, (G %, Go) = H X, ((a)%x (b)) with

a*=a"’, Cu(b*)=H and a, b’ acting f.p.f. over H
Hx, (C‘)XAC4) =HX, ((a)xx (b)) with ab = GVI,
Cu(a’)=H, and a, b* acting f.p.f. over H

(G x H)X, DG = ({(x) X H) X\ ({a) X, (b)) with

x*=x, x"=x", H{a,b)= Hx,{a,b)

{Cs X C3x D)X, DG = ({x) X {x1, x2) X D)%, ({@) % (b))
with D=1lor H x*=x x"=x", x{=x, xj=x:1Xs,
x{=1x, x3=x1x; and D(a, b)= D %X;{a, b)

2
C;XA (C3X1C2)=(X|,X2, X3, X4)><)\ ((al, a:)xl (b))
. b
with x71=x,, X3! = X2, X3 = X4, X&' = X3X4, X{= X1,
b __ a _ ay a a —
X2=X1X2, X1°= X2, X2° = X1X2, X3°= X3, X4* = X4,
5 5
X3 = X3, X4 = X3Xa

C;XA (C§ X/Ca) = (xl,...,X4> Xa ((al, az> Xy (b>)

r=12+(|H|-1)/3
r=12+(|H|-1)3

r=14, B(G)=2
r=14, B(G)=2
r=14, B(G)=2

r=12+(H|-1)6
r=12+(/H|-1)6

r=12+(H|-1)/4
r=12+({H|-1)/4

r=14+5(D|-1)3

r=14, B(G)=2

r=13,8(G)=1

with aj=a,, as=a:’, X]' =X, X3'=X1X2, X3' = X3, X3 = X4, X727 =X,

6
X227 = X2, X31= X4, X417 X3Xa, xy= X3, x2= Xa, x3= X1, X4 = XiXa

(G x H) %, Que = ((x) X H)Xx (@, b) with x* = x~",
x* = x, and HQis = HX; Q45

C3i%2 SDi6 = (X1, y1, X2, y2) Xa (@, b) with x{ =y, yi=xy,
xi=x, yi=xyi,i=12 a*=1=b> a" =a’
C3%3,SDhe = (X1, X2, X3, Xa) X, {a, b) with x{ = x,, x3= x5,
xX$=xy, x5=x0, XT=x, X5=xq, x5=x3", xi=1x,

=12+3-(|H|-1)/16

r=18, B(G)=4

r=18, B(G)=1
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TaBLE 10 (contd.)

G/S(G) G r(G)
SL2,3) (Cix H)%, SL(2,3) = ((x1, x2) X H) % ({2, b) X, (c)) r=12+(/H|-1)/6
with a“=b b =ab, xi=x =x!, i=12, xi =X,

X3= X%z, and H -SL(2,3)= H x,SL(2,3)

Ci; %, Cs Cixa (Cis X Cs) = (x4, X2, x3) X, {a, b) with r=13, B(G)=1

b b b -1
Xi= X2, X7= X3, X3= X\ X275 Xz, X{ = X1, X3= X1 X2 X3

There are no groups G such that G/S(G) is isomorphic to one of the following list: Dis, D>,
Crx;Ce, Ci3%;Cyy CiiX;Cs.

Ae C;XAA(,=(X1,X2, x:,X4)XA (a, b) with 05=b5=1, ":12, B(G)=]
(abY =(a~'b)' =1, x{ = x4, X3 = X1 X4, X3 = XoXa,
X9 = X3Xay X0 = XiXa, Xo= X2X3, X5 = XaXa, X4 = X1X3Xs

P P r=12, B(G)=1
P r=12, B(G)=1
CiXa Zs ={x, Xz, X3, Xa) X (@, b, d) with r=12, B(G)=1

s 3 2 2 2\d 3
a*=b'=(baY =1=4d° (a’ba’)'a’=1, xi=x,,
[ 5
X3 = X3, X3 = X4y Xi = X XaXsy X1 = Xi1X2, X2= X,
b b d a d d
X3= X2X3Xs, X4 = X1X3, X1 = X1, X2 = X2, X3 = X2X3, X4 = X1X2Xs

o S— —

Cs (Cis X HYX Gy = ({x) X H)x, (a) r=14+13-(|H|-1)/8
with x* = x°, and H{a)= H %, {(a)
(CGX H)X, Co=({x) X H)X,{a) r=12+3-(|H|-1)/8

with x°* = x', and H(a)= H %,{(a)

CxX G CsxaMis={x)x, (a)xa (b)) with a®*=1=b% x* =x* x"=x r=14, B(G)=2

CsXa Mis = (x)X, (@)X, (b)) with x* = x>, x* =xT", r=14, g(G)=2
Cs%a (Ca%a Co) = {x) %x (@) X» {B)) r=14, B(G)=2
witha*'=a™', x"=x, x"=x*

Cs X ((Ca X C) X, G3) = (x) X, (@) x{b))x, ) r=14, B(G)=2
with a=ab, b =b, x"=x>, x°=x, x"=x

(Cs X C) X, (Co X Go) = ({(x) X {y1, y2)) Xa ((@) X (b)) r=18, B(G)=2

with x* =x% x* =x, yi=1y,;, ys=yi', yi=y7', yi=y7'

If r(G/S(G))=8 and | G/S(G)|>8, then G/S(G)= C:%,Cs and we have:
Cix,Cs Px,Cs with P satisfying P/Cs=C3, Z(P)=P'=C; r=14, B(G)=1

If r(G/S(G))=9, then G/S(G)=C; and we have:
G (C3X Y)%, Cs = ({x, y) X Y) X, (a) with r=12+4-(|Y|-1)9
x*=y, y* =xy, Y(a)=YXx,{a)

It r(G/S(G)) =10, then G/S(G)E{Ms, C:x, 3, C2x, Cs} and we have:

Mis C2%, Mis = (x1, X2) X {a, b) with a®*=1=b", r=13, B(G)=1
a®=a® xi=1x, xi=x}, xi=1x, x3=1x;'
Cixy 33 Pix,33=P,x,(a,b) with ’=b>=1,a"=a"', r=12, B(G)=1

Py = Cix, Ci = (21, 22, &, a2) X, (b, b2) with
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TABLE 10 (contd.)

GIS(G) G 1(G)

2=z, 0 j=1,2, al'= a1z1, A = a1z2, A3 = A2z,
asv=a;z1z; and bi=biby, bi=b,, bi=bs, b3=b,
1i=12, 25 = 2122, A5 = @G, A5 =y, 21= 2122, 227 2o,
a®=a,, as=a (P, is a 2-group of type PSL(3,4))
CiX,Cs Py %, Cs= P, %, (ab) with P, as above, and r=12, g(G)=1
21=12,, 25 = 2123, A1 = A1Gz, A7 = @, b1 = bib2, b3 =b,,
Z:’= Z, Z:= 22, a‘1’= biba, ﬂg: by, b:’= az, b‘2,= aa:
P:x, Co = P, %, (aB) with P, = C5-Ci={a, b)-(c, d), r=12, B(G)=1
[a,b}=[c, d]=1, *=b? d°=a’b’, [a,c]=a’,
(a,d]=[b,c]=d? [b,d]=b® and C;={(aB) with relations
a*=b b*=a'b',c*=d d*=c"'d",
a®*=cd, b*=c',c?P=b",d? =ab
(P: is a 2-group of type PSU(3,4))

If G =(a)x,(b)=23,, then Lemmas 2.4 and 2.13 of [25] yield r;(aS(G))=3
and r; (bS(G)) = 4 respectively, impossible.

So then, either G/S(G)= G, or G/S(G)=C, with a(G)E{5,6} and r(G)=
12.

If G/S(G)=(b)= C;, then necessarily r;(bS(G)) =3 = rc(b™'S(G)), hence
a(G)=6and rs; (A)=6.1f l{o(g)!g € A}| =5, then A is isomorphic to one of
the following groups: As, A, PSL(2,7), SL(2,8), so G =PI'L(2,8) (a(G)=6).
On the other hand, if |{o(g)| g € A}| =6, then r(G)=11 or 12 and r;(A) =6
implies that “a,~ga, iff o(a|)=o0(ay)” for every a;,a,E A. Let s be the
number of conjugate classes of A fixed by conjugation of b. Then 6 = a(G) =
s -2 implies s =3 and

r(A)=3+(rs(A)-3)-3=12,

hence A € {M, PSL(3,3), PSL(2,19)} which is impossible.

Finally, we consider only the case G/S(G)=C,. Then r(G)=
2s +(r(A)—s)2 with s = a(G), and r(A)=s5+(r6(A)—5)-2=5+(6—5) 2.
If s =6, then r(A)=6 and A =PSL(2,7), impossible. Thus we have s =5 and
r(A)=7, hence either G =PSL(2,9) (a(G)=5) or G =3, (a(G)=73).

LemMMA 1.14. Let G be a non-nilpotent group with S(G) abelian and satisfy-
ing the conditions a(G) =10 and r(G/S(G))=10. Then G is isomorphic to one
group of Table 10.

Proor. The reasonings are similar to the ones followed in Lemma 4.2 of [25]
for &(G)=09, and for that reason we don’t repeat them here.
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LemMa 1.15. Let G be a non-nilpotent group with S(G) solvable. If a(G) =
10 and r(G/S(G)) =11, then G is isomorphic to one of the following groups:

(1) Hx,C,; (r=11 +(’H,“1)/11),

Q) YXQ, (r=11+(|Y|=1)/27),

(3) HX,;Qs, (r=11+(|H|—-1)/32).

PrOOF. Let’s assume r(G/S(G))=11. Then |Cs(%)|=]|Cs(x)| for every
x € G- S(G), where G = G/S(G), and the result follows immediately from
Lemma 2.3 (cf. [25]) observing the tuples Ag for r(G) =11 from Table 3 of [25].

LeEmMMA 1.16. Let G be a nilpotent group such that a(G)=10. Then G is
isomorphic to one of the following groups:

Abelian: 1, C, G, GCXGC, C, CXC; Cn Co, and Y=
C:XCl X+ XCj.

Non-abelian: Ds, Qs, Q1, Oy, CsX Dg, CiX Qg, ;X Dy, C: X Qg, C X, Cy=
(a)X,(b) with a® =a", (C;X C))X,, Co = ({a) X (b)) X, {c) with a‘ = ab, b° =
b, (CsX C) Xy, Cy=((a)x(b))X{c) with a° =a, b° =a’b, Dy, SDi, Qi
D16 X Cy, SDie X G, Qi X Gy, (Cs X )X, Cy = ((a) X (b))><A (c) witha® =a'b,

b =b, My, (Cix Cy)- Co=(a)*x(b))-{c) with c>*=a*, [b,c]=1, a°=a'b,
CeXy, Ci={(a)Yx, (b)Y with a®*=a"', Cix,,Ci=(a)x,(b) with a’®=a’
CixCo=(ay, az, a3, a) X, (b) with al=a,, a;=a, a3=a;a;, ai=a.a,,
Cix, Co=(a)x(b))X,{cy with a°=a"', b'=b", (CixCi) : C=
(ayx(b)-{c) with c*=a’, a‘=a’, b'=b", (CXxCHX,C=
(ay, as) X{as)) %, (b) with al=a, ai=aa, aj=a3', (C:xC) Ci=
(ay, ax) X{as))-{b) with a} = a,, a3=a,a,, a3=a3', b’ = a3, (sz C)%, G =
Kay, az) X{as))%n{(bY with aj=a, a3=aia,, =alas, Cix,C=
(@YX (b)) Xx(c) with a*=a”", b° =a*b™", (Cix c,,)z- C,= (@)% (b)) ()
with a =a”', b° =a’b™", ¢* =(ab), Hol Cs, D, SDx, Qx, (CsX,C)- C,=
(a)yx, (b))-{c) with a®=a’, a*=ba, b°=b, ’=a', (CG:X,C)X,C,=
(@)X, (b))%, (c) with a® =a’, a® =ba, b° =b, C3%X, C,=(a, b, c) X, (d) with
relations a® = a, b* = ab, c* = abc.

Proor. If G is abelian, it is immediate. On the other hand, in case G is
non-abelian, set G = P, X - - - X P, with the P; Sylow p;-subgroups of G. Then we
have $(G)=M(Z(P))% - xQ(Z(P)). If |G| is divisible by at least two
prime numbers, it follows easily that G = C; X Ds of G = (53X Q5. So we can
suppose that G is a p-group. If p#2, then necessarily p=3 and G = Q, or
G = Q,. Suppose that G is a 2-group. We have r(G/S(G))=a(G)+1=11,
hence G = G/S(G) is isomorphic to one of the following groups: G, C,, C3, Ds,
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Qs, SDys, Qss, Dis, s, C: X G, Cg, C X Dy, C:X Qg, C X, Cy, (C4 X Cz)XM G,
Ci X, G, (CiX G) Xy, Gy, Dy, Qsa, SDsy, 2°Tsay, 2°Teas, 2°Tha,, 2°T1a,, 2°Tsas.

If G/S(G)is a cyclic group, then G is abelian, because S(G)= Z(G), which
is impossible.

If G/S(G)=C3, then a(G)="=Ti_,r:(dS(G)), so there exists i such that
rs(d:S(G))=3, consequently 3=2-|S(G)|/4, hence |S(G)|=6, and either
|S(G)| =2, hence G €{Ds, Qs}, or |S(G)| =4 and G is isomorphic to one of the
following groups: C; X Dy, C; X Qg, X, Cy, (CiX &)Xy, C.

If G/S(G)= Dy, then

a(G)=|S(G)|+ rs(a’S(G)) + 1 (bS(G)) + rs (abS(G)) and |S(G)| € {2, 4).

If | S(G)| =2, then G is isomorphic to one of the following groups: D, SD;e,
Qu, Mis, (Cix )X, Co. If |S(G)| =4, then G/S(G)=D; with S(G)=
Q(Z(G))=C3. Besides, there exists b € G~ S(G) such that {Cs(b)|=38,
because a(G)=10, so Z(G)=S(G) and r(G)=10+4=14. Therefore
| G/G'| = 8 and consequently G is one of the ten groups of the first branch of the
family T, (the second branch satisfies | G/G'| =2%).

Suppose G/S(G)= Qs, then a(G)=3|S(G)|+ rs(a’S(G)), so |S(G)| =2,
impossible.

Suppose G/S(G)€E {Dss, SD16, Qie} and let @ be an element of order § in
G/S(G), then2|Cs(a)N S(G)|=2-|S(G)|=10-4,50|S(G)|=2and r(G)=
12. Thus G €{D,,SDs,, Qx}.

In other cases we have |S(G)|=4 for |G/S(G)|=16 and |S(G)|=2 if
| G/S(G)| =32, as follows from a simple inspection of the tuples A and of the
fact that a(G) = 10. Therefore r(G) =14, | G/G’| =2° and in these cases G is a
stem group. Further, either G has order 32 and is in one of the families I,
i=2,3,4,6,7, or G is a stem group of order 64 of the families I'>, or I';;, being
for these groups r(G)=13, Z(G)= S(G)=C, and a(G)= 11, impossible.

THEOREM 1.17. G € @y, if and only if G is one of the following groups: M,
PSL(3,3), PSL(2,19), CuX;Ci, CiX%;Qu, CiuX,;SL22,3), CiX,,As,
C3%; (Cs%, C), CloX, SL(2,5), C3X, A, 28, 29, C3x, 35, P1X, 35, Py X, G,
P,x,Cs, C; X; (Cs X, Gy), Cix, C,, Cix, (CisX;C), Csx,, Dy, CsX,, Dy,
Cs%,Qs, C;XSL2,3)} U 2T, U 2Tha|1=i=3) U 2T |1=i=2) U
{2°T3d,, 2°Tado} U{C3 %, Qg, (Cs X Co) %Gy, C3%,C5).

Proor. If is an immediate consequence from Theorem 2.17 [25], Lemma
2.18 [25}, Lemma 2.19 [25), Lemma 2.20 [25], Theorem 3.2 [25], Lemma 4.1 [25),
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Lemma 4.2 [25], Lemma 4.5 [25], Lemma 4.8 [25], Lemma 4.11 [25], Lemma 4.14
{25], and Lemmas 1.8, 1.13, 1.14, 1.15 and 1.16.

CororLary 1.18.  r(G) =12 iff G is isomorphic to one of the groups listed in
Table 1.

CororLary 1.19. (1) r(G) =13 and B(G) > 1 iff G is isomorphic to one of the
groups listed in Table 2(i).

(2) r(G)Y=13, B(G)=1 and 0= a(G)=4 iff G is isomorphic to one of the
group listed in Table 2(ii).

3) r(G)=13, B(G)=1, 5= a(G)=10 and S(G) is solvable iff G is isomor-
phic to one of the group listed in Table 2(iii).

CoroLLARY 1.26. (1) There are no groups satisfying r(G) =20 and B(G)>8.

2) r(G)=20, B(G)=8 and 0=a(G)=4 iff G is isomorphic to one of the
groups listed in Table 9(ii).

(3) r1(G)=20, B(G)=8,5= a(G)=1 and S(G) is solvable iff G is isomorphic
to one of the group listed in Table 9(iii).

CoOROLLARY 1.27. Setn €N, n =21. Then r(G)=n and B(G)=n — a with
1=a=11, if and only if GE{F,,, F,,, Fis, F.i, Fs, Fus, F.7, Fis} with
n=logn n=log(2n—-3), t=(>og(3n—-8))2, t.=log(d4n—15), =
log/(6n —35), ts=(log:(7n —48))/3, t; = (logs(8n —63))/2, t;=1og;(10n —99),
and where F,; denote E,; if t is a natural number, and is otherwise dropped from the
list.

Proor. It follows from Theorem 4.3 [25], Theorem 4.6 [25], Theorem 4.9
[25], Theorem 4.12 [25], Theorem 4.15 [25] and Theorem 1.17.
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