CLASSIFICATION OF FINITE GROUPS ACCORDING TO THE NUMBER OF CONJUGACY CLASSES II

BY

ANTONIO VERA LÓPEZ[®] AND JUAN VERA LÓPEZ[®]

"Departamento de Matemáticas, Facultad de Ciencias, Universidad del Pais Vasco, Apartado 644, Bilbao, Spain; and "Instituto Nacional de Bachillerato, Cura Valera, Huercal-Overa, Almeria, Spain

ABSTRACT

In the following, G denotes a finite group, r(G) the number of conjugacy classes of G, $\beta(G)$ the number of minimal normal subgroups of G and $\alpha(G)$ the number of conjugate classes of G not contained in the socle S(G). Let $\Phi_j = \{G \mid \beta(G) = r(G) - j\}$. In this paper, the family Φ_{11} is classified. In addition, from a simple inspection of the groups with r(G) = b conjugate classes that appear in $\bigcup_{j=1}^{n} \Phi_j$, we obtain all finite groups satisfying one of the following conditions: (1) r(G) = 12; (2) r(G) = 13 and $\beta(G) > 1$; ...; (9) r(G) = 20 and $\beta(G) > 8$; (10) r(G) = n and $\beta(G) = n - a$ with $1 \le a \le 11$, for each integer $n \ge 21$. Also, we obtain all finite groups G with $13 \le r(G) \le 20$, $\beta(G) \le r(G) - 12$, and satisfying one of the following conditions: (i) $0 \le \alpha(G) \le 4$; (ii) $5 \le \alpha(G) \le 10$ and S(G) solvable.

1. Introduction

In this work, G will denote a finite group, r = r(G) the number of conjugacy classes, $\beta(G)$ the number of minimal normal subgroups of G, and $\alpha(G)$ the number of conjugate classes of G not contained in the socle S(G).

The possibility of classifying finite groups according to the number r(G) and to some properties of their conjugacy classes was suggested in [2].

The classification of all finite groups with $r(G) \le 9$ was carried out in a series of papers by G. A. Miller and W. Burnside $(r(G) \le 5, \text{ cf. } [2] \text{ Note A, 1910})$, D. I. Sigley (r(G) = 6, [21], 1935), J. Poland (r(G) = 7, [19], 1966), L. F. Kosvintsev (r(G) = 8, [12], 1974) and V. A. Odincov, A. I. Starostin (r(G) = 9, [17], 1976). In 1978, A. G. Aleksandrov and K. A. Komissarcik ([1]) found all finite simple groups with $r(G) \le 12$.

Received February 24, 1986

In [25] we approached the problem of classifying finite groups according to the number r(G) through the classification of the families $\Phi_i = \{G \mid \beta(G) = r(G) - j\}$ for small values of the natural number j. The families Φ_i , i = 1, 2, ..., 10 are classified and as an immediate corollary, the previously known classification of finite groups with $r(G) \le 9$ is found, as well as that of those finite groups satisfying one of the following conditions:

- (i) r(G) = 10,
- (ii) r(G) = 11,
- (iii) r(G) = n and $\beta(G) = n a$ with $1 \le a \le 10$, for each integer $n \ge 12$.

In this paper, all groups G with $\beta(G) = r(G) - 11$ are classified. Using the results of [25], we obtain as an immediate corollary all finite groups satisfying one of the following conditions:

- (1) r(G) = 12,
- (2) r(G) = 13 and $\beta(G) > 1$,
- (3) r(G) = 14 and $\beta(G) > 2$,

.....

- (9) $r(G) = 20 \text{ and } \beta(G) > 8$,
- (10) r(G) = n and $\beta(G) = n a$ with $1 \le a \le 11$, for each integer $n \ge 21$.

Moreover, we obtain all finite groups G with $13 \le r(G) \le 20$ and $\beta(G) \le r(G) - 12$, and satisfying one of the following conditions:

- (a) $0 \le \alpha(G) \le 4$,
- (b) $5 \le \alpha(G) \le 10$ and S(G) solvable.

We shall follow closely the notation introduced in [25]. If $\emptyset \neq S \subseteq G$, we define

$$r_G(S) = |\{\operatorname{Cl}_G(g) | \operatorname{Cl}_G(g) \cap S \neq \emptyset\}|.$$

In addition, if S is a normal set in G, we define $\Delta_S^G = (|C_G(x_1)|, \ldots, |C_G(x_t)|)$, if $|C_G(x_1)| \ge \cdots \ge |C_G(x_t)|$ and $S = \operatorname{Cl}_G(x_1) \dot{\cup} \cdots \dot{\cup} \operatorname{Cl}_G(x_t)$. In particular, if S(G) denotes the socle of G and $S_0 = \bigcup_{g \in G} (xS(G))^g$, then we write $\Delta_x = \Delta_x^G = \Delta_{S_0}^G$. Finally, in case S = G, we set $\Delta_S^G = \Delta_G$.

Also, $\langle a \rangle = C_m$ denotes a cyclic group of order m generated by a, $\hat{\Sigma}_m^{(i)}$ denotes the two non-isomorphic proper coverings of Σ_m by C_2 , and

$$M_{2^n} = \langle a, b \mid a^{2^{n-1}} = 1 = b^2, a^b = a^{1+2^{n-1}} \rangle$$

denotes the ordinary non-abelian group of order 2".

Now, the finite groups satisfying conditions (1)-(9) are described in Tables 1-9. These tables list the r-tuples Δ_G and the structures of G/S(G).

Table 1
The finite groups with exactly twelve conjugacy classes

\overline{G}	Δ_G	G/S(G)	Reference
$C_2 \times C_6$	(12,,12)	1	(2.17) [25]
C_{12}	$(12,\ldots,12)$	C_2	(2.17) [25]
$C_3 \times_{\lambda} C_8$	$(24, \dots, 24, 12, \dots, 12, 8, \dots, 8)$	C_4	(4.2) [25]
$C_4 \times \Sigma_3$	$(24, \dots, 24, 12, \dots, 12, 8, \dots, 8)$	C_2^2	(4.2) [25]
$C_2^2 \times \Sigma_3$	$(24, \dots, 24, 12, \dots, 12, 8, \dots, 8)$	C_2	(4.1) [25]
$C_2 \times DC_3$	$(24, \dots, 24, 12, \dots, 12, 8, \dots, 8)$	C_2	(4.1) [25]
$C_3 \times D_{10}$	$(30, 30, 30, 15, \dots, 15, 6, 6, 6)$	C_2	(2.20) [25]
$C_2 \times (C_9 \times_f C_2)$	(36, 36, 18,, 18, 4, 4)	Σ_3	(4.2) [25]
$C_9 \times_{\lambda} C_4$	(36, 36, 18,, 18, 4, 4)	Σ_3	(4.2) [25]
$C_3 \times A_4$	(36, 36, 36, 12, 12, 12, 9,, 9)	C_3	(4.2) [25]
$C_3^2 \times_{\lambda} C_4$	$(36, 36, 18, \dots, 18, 4, 4)$	C_2	(2.19) [25]
$C_2^2 \times_{\lambda} C_9$	$(36, 36, 36, 12, 12, 12, 9, \dots, 9)$	C_3	(4.2) [25]
$(C_3 \times C_7) \times_f C_2$	$(42,21,\ldots,21,2)$	C_2	(2.18) [25]
$C_3 \times_{\lambda} Q_{16}$	(48, 48, 24, 24, 24, 12,, 12, 8, 8, 4)	D_8	(4.2) [25]
$C_3 \times_{\lambda} D_{16}$	(48, 48, 48, 24, 24, 12,, 12, 8, 8, 4)	D_8	(4.2) [25]
$C_3 \times_{\lambda} SD_{16}$	(48, 48, 48, 24, 24, 12,, 12, 8, 8, 4)	D_8	(4.2) [25]
$\Sigma_3 \times D_{10}$	(60, 30, 30, 30, 20, 15, 15, 12, 10, 10, 6, 4)	C_2^2	(4.2) [25]
$C_3^2 \times_{\lambda} C_8$	$(72, 72, 18, \dots, 18, 8, \dots, 8)$	C_4	(4.2) [25]
$\Sigma_3 \times A_4$	(72, 36, 24, 24, 18, 18, 12, 9, 9, 8, 6, 6)	C_6	(4.2) [25]
$C_2 \times (C_3^2 \times_f C_4)$	$(72, 72, 18, \dots, 18, 8, \dots, 8)$	C_4	(4.2) [25]
$(C_2^2 \times C_7) \times_f C_3$	(84, 28,, 28, 3, 3)	C_3	(2.19) [25]
$(C_2^2 \times Q_8) \times_{\lambda} C_3$	(96, 96, 32, 32, 16,, 16, 6,, 6)	A_4	(4.2) [25]

TABLE 1 (contd.)

G	Δ_G	G/S(G)	Reference
$\operatorname{Hol}(2^5\Gamma_2 h, C_3)$	(96, 96, 32, 32, 16,, 16, 6,, 6)	A_4	(4.2) [25]
$C_3^3 \times_{\lambda} C_4$	(108, 54, 27,, 27, 6, 4, 4)	C ₄	(4.1) [25]
$(C_3 \times C_7) \times_{\lambda} C_6$	(126, 63, 21, 21, 21, 18, 18, 9, 9, 6, 6, 6)	C_6	(4.2) [25]
$C_2 \times (C_3^2 \times_f Q_8)$	$(144, 144, 18, 18, 16, 16, 8, \dots, 8)$	$Q_{\scriptscriptstyle 8}$	(4.2) [25]
$C_3^2 \times_{\lambda} (C_4 \times_{\lambda} C_4)$	$(144, 144, 18, 18, 16, 16, 8, \dots, 8)$	Q_8	(4.2) [25]
$(C_2^2 \times C_7) \times_{\scriptscriptstyle A} C_6$	$(168, 56, 28, \dots, 28, 24, 8, 6, \dots, 6)$	C_6	(4.2) [25]
$C_3^3 imes_{\lambda} Q_8$	$(216, 108, 27, 27, 27, 24, 12, \dots, 12, 4, 4)$	Q_8	(4.2) [25]
$C_{37}\times_f C_6$	$(222,37,\ldots,37,6,\ldots,6)$	C_6	(4.2) [25]
$\Sigma_s^{(1)}$	$(240, 240, 12, \dots, 12, 10, 10, 8, 8, 8)$	Σ_5	(1.14)
$\Sigma_s^{(2)}$	$(240, 240, 12, \dots, 12, 10, 10, 8, 8, 8)$	Σ_5	(1.14)
$PSL(2,7) \times C_2$	$(336, 336, 16, 16, 14, \dots, 14, 8, 8, 6, 6)$	{1}	(3.2) [25]
$(A_5 \times C_3) \times_{\lambda} C_2$	(360, 180, 24, 18, 15, 15, 15, 12, 12, 9, 6, 4)	C_2	(2.20) [25]
$C_2^4 \times_{\lambda} \Sigma_4$	(384, 128, 32, 32, 32, 16, 16, 16, 8, 8, 8, 3)	$C_2^4 \times_{\lambda} \Sigma_3$	(1.14)
$P_1 \times_{\lambda} C_6$ $P_2 \times_{\lambda} C_6$	(384, 128, 32, 32, 32, 16, 16, 16, 8, 8, 8, 8, 3)	$C_2^4 \times_{\lambda} C_6$	(1.14)
	(384, 128, 32, 24, 16, 16, 16, 16, 6, 6, 6, 6)	$C_2^4 \times_{\lambda} C_6$	(1.14)
$C_2^4 imes_{\lambda_2} A_5$	$(960, 192, 96, 16, 16, 12, \dots, 12, 8, 5, 5)$	A_5	(4.2) [25]
$C_3^4 \times_f Q_{16}$	(1296, 81,, 81, 16, 8, 8, 8, 4, 4)	Q_{16}	(4.5) [25]
$C_3^4 \times_f (C_5 \times_{\scriptscriptstyle A} C_4)$	$(1620, 81, \stackrel{4}{\dots}, 81, 20, 10, \stackrel{4}{\dots}, 10, 4, 4)$	$C_5 \times_{\lambda} C_4$	(4.8) [25]
$C_2^4 \times_{\lambda} \Sigma_5$	(1920, 128, 48, 32, 32, 16, 16, 8, 8, 6, 6, 5)	Σ_{s}	(1.14)
$C_{ii}^2 \times_f \mathrm{SL}(2,3)$	$(2.904, 121, \dots, 121, 24, 6, \dots, 6, 4)$	SL(2, 3)	(4.5) [25]
$C_3^4 \times_f (C_5 \times_{\scriptscriptstyle A} C_8)$	(3240, 81, 81, 40, 10, 10, 8,, 8)	$C_5 \times_{\lambda} C_8$	(4.14) [25]
PSL(2, 19)	$(3420, 20, 19, 19, 10, \dots, 10, 9, \dots, 9)$	{1}	(1.13)
PSL(3, 3)	(5616, 54, 48, 13,, 13, 9, 8, 8, 8, 6)	{1}	(1.13)
$C_2^4 \times_{\scriptscriptstyle{A}} A_6$	(5760, 384, 36, 32, 32, 16, 12, 9, 8, 8, 5, 5)	A_6	(1.14)
$C_{19}^{z}\times_{f}\mathrm{SL}(2,5)$	(43320, 361,, 361, 120, 10,, 10, 6, 6, 4)	SL(2,5)	(4.11) [25]
M ₂₂	(443520, 384, 36, 32, 16, 12, 11, 11, 8, 7, 7, 5)	{1}	(1.13)

TABLE 2 (i) The finite groups satisfying r(G) = 13 and $\beta(G) > 1$

<i>G</i>	Δ_G	G/S(G)	Reference
$C_5 \times_{\lambda_1} D_8$	(40, 40, 20,, 20, 4, 4)	C_2^2	(4.2) [25]
$C_5 \times_{\lambda_2} D_8$	$(40, 40, 20, \dots, 20, 4, 4)$	C_2^2	(4.2) [25]
$C_5 \times_{\lambda} Q_8$	$(40, 40, 20, \dots, 20, 4, 4)$	C_2^2	(4.2) [25]
$C_5^2 \times_{\lambda} C_4$	$(100, 50, 50, 25, \dots, 25, 20, 10, 10, 4, 4)$	C_4	(4.2) [25]
$C_2^2 \times_{\lambda} (C_{15} \times_f C_2)$	$(120, 60, 60, 40, 20, 20, 15, \dots, 15, 4, 4)$	Σ_3	(4.2) [25]

(ii) The finite groups satisfying r(G) = 13, $\beta(G) = 1$ and $0 \le \alpha(G) \le 4$

G	Δ_G	G/S(G)	Reference
C ₁₃	(13,,13)	1	(1.16)
$C_{23}\times_f C_2$	$(46,23,\ldots,23,2)$	C_2	(2.18) [25]
$C_{31}\times_f C_3$	$(93,31,\ldots,31,3,3)$	C_3	(2.19) [25]
$C_{37}\times_f C_4$	(148, 37,, 37, 4, 4, 4)	<i>C</i> ₄	(2.20) [25]
$C_{41}\times_f C_5$	$(205,41,\ldots,41,5,\ldots,5)$	C_5	(4.1) [25]

(iii) The finite groups satisfying r(G) = 13, $\beta(G) = 1$, $5 \le \alpha(G) \le 10$ and S(G) solvable

G	Δ_G	G/S(G)	Reference
$C_5^2 \times_{\lambda} \Sigma_3$	$(150,50, \dots, 50, 25, 25, 10, \dots, 10, 3)$	Σ_3	(4.2) [25]
$C_{23}\times_f C_{13}$	(253, 23, 23, 11, , 11)	C_{n}	(1.15)
$C_{43} \times_f C_6$	$(258, 43, \dots, 43, 6, \dots, 6)$	C ₆	(4.2) [25]
$C_{43}\times_f C_7$	$(301, 43, \dots, 43, 7, \dots, 7)$	C_7	(4.5) [25]
$C_{31}\times_f C_{10}$	$(310, 31, \dots, 31, 10, \dots, 10)$	C_{10}	(4.14) [25]
$C_5^2 \times_{\lambda} M_{16}$	$(400, 50, 40, 25, 16, 16, 16, 10, 8, \dots, 8)$	M_{16}	(1.14)
$C_3^3 \times_{\scriptscriptstyle A} A_4$	$(324, 81, 81, 54, 27, 12, 9, \dots, 9, 6)$	A_4	(4.2) [25]
$C_{41} \times_f C_8$	$(328,41,\ldots,41,8,\ldots,8)$	C _*	(4.8) [25]
$C_{37} \times_f C_9$	$(333,37,\ldots,37,9,\ldots,9)$	C,	(4.11) [25]
$C_5^2 \times_{\lambda} M_{16}$	$(400, 50, 40, 25, 16, 16, 16, 10, 8, \dots, 8)$	M_{16}	(1.14)
$C_2^4 \times_{\Lambda} (C_3^2 \times_{\mathcal{I}} C_4)$	(576, 96, 64, 36, 16, 16, 12, 9, 8,, 8)	$C_3^2 \times_f C_4$	(1.14) [25]
$C_3^3 \times_{\lambda} (C_{13} \times_f C_3)$	$(1053, 81, 81, 13, \dots, 13, 9, \dots, 9)$	$C_{13}\times_f C_3$	(1.14)
$C_{11}^2 \times_I (C_5 \times_{\lambda} C_8)$	(4840, 121,, 121, 40, 10, 10, 8,, 8)	$C_5 \times_{\lambda} C_8$	(4.14) [25]

TABLE 3 (i) The finite groups satisfying r(G) = 14 and $\beta(G) > 2$

G	Δ_G	G/S(G)	Reference
$C_2 \times D_{16}$	(32,, 32, 16,, 16, 8,, 8)	D_8	(1.16)
$C_2 \times SD_{16}$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	D_8	(1.16)
$C_2 \times Q_{16}$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	D_8	(1.16)
$(C_8 \times C_2) \times_{\scriptscriptstyle{A}} C_2$	$(32,\ldots,32,16,\ldots,16,8,\ldots,8)$	D_8	(1.16)
$(C_8 \times C_2) \cdot C_4$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	$D_{\rm s}$	(1.16)
$C_8 \times_{\lambda_1} C_4$	$(32,\ldots,32,16,\ldots,16,8,\ldots,8)$	D_{s}	(1.16)
$C_8 \times_{\lambda_2} C_4$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	D_8	(1.16)
$C_2^4 \times_{\scriptscriptstyle{A}} C_2$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	C_2^3	(1.16)
$C_4^2 \times_{\lambda_1} C_2$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	C_2^3	(1.16)
$C_4^2 \times_{\lambda_2} C_2$	$(32, \ldots, 32, 16, \ldots, 16, 8, \ldots, 8)$	C_2^3	(1.16)
$C_4^2 \cdot C_4$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	C_2^3	(1.16)
$C_{4}^{2} \cdot C_{4}$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	C_2^3	(1.16)
$(C_4 \times C_2^2) \times_{\lambda_1} C_2$	$(32,\ldots,32,16,\ldots,16,8,\ldots,8)$	C_2^3	(1.16)
$(C_4\times C_2^2)\times_{\lambda_2}C_2$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	C_2^3	(1.16)
$(C_4 \times C_2^2) \cdot C_4$	$(32, \dots, 32, 16, \dots, 16, 8, \dots, 8)$	C_2^3	(1.16)
$C_2 \times SL(2,3)$	$(48, \dots, 48, 12, \dots, 12, 8, 8)$	A_4	(1.14)
$C_5^2 \times_f C_2$	$(50, 25, \dots, 25, 2)$	C_2	(2.18) [25]
$C_7^2 \times_{f_2} C_6$	$(294, 49, \dots, 49, 6, \dots, 6)$	C ₆	(4.2) [25]
(ii)	The finite groups satisfying $r(G) = 14$, $\beta(G) \le$	$2 \text{ and } 0 \leqq \alpha(G) \leqq 4$	
G	Δ_G	G/S(G)	Reference
C_{14}	(14,,14)	1	(1.16)
$C_{11} \times_{\lambda} C_4$	$(44, 44, 22, \dots, 22, 4, 4)$	C_2	(2.19) [25]
$C_2 \times (C_{11} \times_f C_2)$	$(44,44,22,\ldots,22,4,4)$	C_2	(2.19) [25]
$C_2 \times (C_{13} \times_f C_3)$	$(78, 78, 26, \dots, 26, 6, \dots, 6)$	C_3	(4.1) [25]
$C_{41}\times_f C_4$	$(164,41,\ldots,41,4,4,4)$	C ₄	(2.20) [25]

TABLE 3 (contd.)

(iii) The finite groups satisfying $r(G) = 14$, $\beta(G) \le 2$, $5 \le \alpha(G) \le 10$ and $S(G)$ solvable			
\boldsymbol{G}	Δ_G	G/S(G)	Reference
$C_5 \times_{\lambda_1} M_{16}$	(80, 80, 40, 40, 20, 20, 20, 16, 16, 8,, 8)	$C_4 \times C_2$	(1.14)
$C_5 \times_{\lambda_2} M_{16}$	$(80, 80, 40, 40, 20, 20, 20, 16, 16, 8, \dots, 8)$	$C_4 \times C_2$	(1.14)
$C_5 \times_{\lambda} (C_4 \times_{\lambda} C_4)$	$(80, 80, 40, 20, \dots, 20, 16, 16, 8, \dots, 8)$	$C_4 \times C_2$	(1.14)
$C_5 \times_{\lambda} ((C_4 \times C_2) \times_{\lambda} C_2)$	$(80, 80, 40, 20, \dots, 20, 16, 16, 8, \dots, 8)$	$C_4 \times C_2$	(1.14)
$C_2 \times (C_7 \times_f C_6)$	(84, 84, 14, 14, 12,, 12)	C ₆	(1.14)
$C_7 \times_{\lambda} C_{12}$	(84, 84, 14, 14, 12,, 12)	C ₆	(1.14)
$C_2^2 \times_{\lambda_1} (C_3 \times_{\lambda} D_8)$	(96, 96, 48, 32, 32, 16, 12,, 12, 8,, 8)	D_{12}	(1.14)
$C_2^2 \times_{\lambda_2} (C_3 \times_{\lambda} D_8)$	(96, 96, 48, 32, 32, 16, 12,, 12, 8,, 8)	D_{12}	(1.14)
$C_2^2 \times_{\lambda} (C_3 \times_{\lambda} Q_8)$	(96, 96, 48, 32, 32, 16, 12,, 12, 8,, 8)	D_{12}	(1.14)
$C_{13} \times_{\lambda} C_{8}$	$(104, 104, 26, \dots, 26, 8, \dots, 8)$	C ₄	(4.2) [25]
$C_2 \times (C_{13} \times_f C_4)$	$(104, 104, 26, \dots, 26, 8, \dots, 8)$	C ₄	(4.2) [25]
$C_2 \times (C_{11} \times_f C_5)$	$(110, 110, 22, \dots, 22, 10, \dots, 10)$	<i>C</i> ₅	(4.2) [25]
$C_5^2 \times_{\lambda} (C_2 \times C_4)$	$(200, 50, 50, 40, 40, 25, 25, 10, 10, 8, \dots, 8)$	$C_2 \times C_4$	(4.8) [25]
$(C_5 \times C_2^2) \times_{\lambda} DC_3$	(240, 80, 60, 48, 30, 16, 15, 15, 8,, 8, 6)	DC ₃	(1.14)
$C_2^4 \times_{\lambda} (C_3^2 \times_f C_2)$	(288, 96, 96, 36, 36, 32, 12, 12, 9, 9, 8, 8, 8, 8)	$C_3^2 \times_f C_2$	(1.14)
$C_7^2 \times_{f_1} C_6$	$(294, 49, \dots, 49, 6, \dots, 6)$	C ₆	(4.2) [25]
$C_7^2 \times_{f_3} C_6$	$(294,49,\ldots,49,6,\ldots,6)$	C ₆	(4.2) [25]
$C_5^2 \times_{\lambda} (C_2 \times \Sigma_3)$	$(300, 50, \dots, 50, 20, 20, 10, \dots, 10, 12, 6, 6)$	D_{12}	(4.2) [25]
$C_7^2 \times_f C_8$	$(392, 49, \dots, 49, 8, \dots, 8)$	C _n	(4.8) [25]
$C_{41}\times_f C_{10}$	(410, 41,, 41, 10,, 10)	C_{10}	(4.14) [25]
$C_3^3 \times_{\lambda} \Sigma_4$	(648, 108, 81, 54, 24, 12,, 12, 9, 9, 9, 6)	Σ_4	(1.14)
$P\times_f C_5$, $P/C_2^4 \simeq C_2^4$	$(1280, 256, 256, 32, \dots, 32, 5, \dots, 5)$	$C_2^4 \times_f C_5$	(1.14)
$C_2^4 \times_{\lambda} SL(2,5)$	(1920, 1920, 128, 128, 16,, 16, 10,, 10, 6, 6)	A_s	(1.14)
$C_2^5 \cdot A_5$	(1920, 320, 192, 128, 16,, 16, 10,, 10, 6, 6)	A_5	(1.14)
$C_{11}^2 \times_f (C_5 \times_f C_4)$	(2420, 121,, 121, 20, 10, 10, 10, 10, 4, 4)	$C_5 \times_{\lambda} C_4$	(4.8) [25]
$C_{13}^2 \times_f \mathrm{SL}(2,3)$	(4056, 169,, 169, 24, 6,, 6, 4)	SL(2,3)	(4.5) [25]
$C_{17}^2 \times_f (\mathrm{SL}(2,3) \cdot C_4)$	(13872, 289,, 289, 48, 8, 8, 8, 6, 6, 4)	SL(2, 3) · C₄	(4.8) [25]

TABLE 4 (i) The finite groups satisfying r(G) = 15 and $\beta(G) > 3$

G	Δ_{G}	G/S(G)	Reference
$C_3^3 \times_f C_2$	(54, 27,, 27, 2)	C ₂	(2.18) [25]
$(C_3 \times C_9) \times_f C_2$	$(54, 27, \ldots, 27, 2)$	Σ_3	(1.14)
$C_3^4 \times_f Q_8$	$(648, 81, \dots, 81, 8, 4, 4, 4)$	Q_8	(4.1) [25]

(ii) The finite groups satisfying r(G) = 15, $\beta(G) \le 3$ and $0 \le \alpha(G) \le 4$

G	Δ_G	G/S(G)	Reference
C ₁₅	(15,,15)	1	(1.16)
$C_3 \times D_{14}$	(42, 42, 42, 21,, 21, 6, 6, 6)	C_2	(2.20) [25]
$C_{37}\times_f C_3$	(111, 37,, 37, 3, 3)	C_3	(2.19) [25]
$(C_3 \times C_{13}) \times_{\lambda} C_4$	(156, 78, 39,, 39, 12, 6, 4, 4)	C ₄	(4.1) [25]
$(\operatorname{PSL}(2,7) \times C_3) \times_{\lambda} C_2 (A_6 \times C_3) \cdot C_4$	(1008, 504, 48, 24, 24, 21, 21, 21, 18, 12, 12, 9, 8, 8, 6) (2160, 1180, 48, 48, 27, 27, 27, 24, 24, 15, 15, 15, 8, 8, 4)	C_2 C_2	(1.18) (2.20) [25]

(iii) The finite groups satisfying r(G) = 15, $\beta(G) \le 3$, $5 \le \alpha(G) \le 10$ and S(G) solvable

$C_3 \times D_8$	(24,, 24, 12,, 12)	C_2^2	(1.16)
$C_3 \times Q_8$	(24,, 24, 12,, 12)	C_z^2	(1.16)
$C_5 \times \Sigma_3$	$(30,\ldots,30,15,\ldots,15,10,\ldots,10)$	C_2	(4.2) [25]
$C_3 \times \text{Hol } C_5$	(60, 60, 60, 15, 15, 15, 12,, 12)	C ₄	(4.2) [25]
$C_3 \times (C_7 \times_f C_3)$	(63, 63, 63, 21,, 21, 9,, 9)	C ₃	(4.2) [25]
$C_7 \times_{\lambda} C_9$	(63, 63, 63, 21,, 21, 9,, 9)	C ₃	(4.2) [25]
$C_3 \times \Sigma_4$	(72, 72, 72, 24, 24, 24, 12,, 12, 9, 9, 9)	Σ_3	(4.2) [25]
$C_3^2 imes_{\lambda_1} D_8$	$(72,72,36,\ldots,36,18,18,12,\ldots,12,4)$	C_2^2	(4.2) [25]
$C_3^2 \times_{\lambda_2} D_8$	(72, 72, 36,, 36, 18, 18, 12,, 12, 4)	C_2^2	(4.2) [25]
$C_3^2 imes_{\lambda_3} Q_8$	$(72, 72, 36, \overset{4}{\dots}, 36, 18, 18, 12, \overset{6}{\dots}, 12, 4)$	C_2^2	(4.2) [25]
$\Sigma_3 \times D_{14}$	(84, 42,, 42, 28, 21, 21, 21, 14, 14, 14, 12, 6, 4)	C_2^2	(4.2) [25]

TABLE 4 (contd.)

G	Δ_G	G/S(G)	Reference
$C_3^3 \times_{\lambda} C_2^2$	(108, 54, 54, 54, 27,, 27, 12, 12, 12, 6, 6, 6)	C_2^2	(4.2) [25]
$(C_3 \times C_7) \times_{\lambda} C_6$	(126, 63, 42, 42, 42, 21, 21, 18, 18, 14, 14, 9, 9, 6, 6)	C ₆	(4.2) [25]
$C_3^2 \times_{\lambda} D_{16}$	(144, 144, 36,, 36, 12,, 12, 8, 8, 8)	D_8	(4.2) [25]
$C_3^2 \times_{\lambda} SD_{16}$	(144, 144, 36,, 36, 12,, 12, 8, 8, 8)	D_8	(4.2) [25]
$C_3^2 \times_{\scriptscriptstyle A} Q_{16}$	(144, 144, 36,, 36, 12,, 12, 8, 8, 8)	D_8	(4.2) [25]
$C_3^3 \times_{\lambda} D_8$	(216, 108, 54, 54, 27, 27, 24, 12,, 12, 6, 6)	D_8	(4.2) [25]
$C_3^3 \times_{\scriptscriptstyle A} C_8$	(216, 108, 27, 27, 27, 24, 24, 24, 12, 12, 12, 12, 8,, 8)	C_8	(1.14)
$(C_3 \times C_{13}) \times_{\lambda} C_6$	(234, 117, 39,, 39, 18, 18, 9, 9, 6, 6, 6)	C ₆	(4.2) [25]
$(C_5 \times C_3^2) \times_{\lambda} C_8$	(360, 90, 45,, 45, 40, 10, 8,, 8)	C_8	(4.8) [25]
$C_{51}\times_f C_{10}$	$(510, 51, \dots, 51, 10, \dots, 10)$	C_{10}	(4.10) [25]

TABLE 5 (i) The finite groups satisfying r(G) = 16 and $\beta(G) > 4$

G	Δ_G	G/S(G)	Reference
C ₂	(16,,16)	1	(1.16)
$C_2^2 \times C_4$	(16,,16)	C_2	(1.16)
$C_2 \times (C_2^4 \times_f C_3)$	$(96, 96, 16, \dots, 16, 6, \dots, 6)$	C_3	(4.1) [25]

(ii) The finite groups satisfying r(G) = 16, $\beta(G) \le 4$ and $0 \le \alpha(G) \le 4$

G	Δ_G	G/S/(G)	Reference
$C_2^2 \times D_{10}$	(40,, 40, 20,, 20, 8,, 8)	C ₂	(4.1) [25]
$C_2 \times (C_5 \times_{\lambda} C_4)$	$(40, \dots, 40, 20, \dots, 20, 8, \dots, 8)$	C_2	(4.1) [25]
$C_{13}\times_{\lambda}C_{4}$	$(52, 52, 26, \dots, 26, 4, 4)$	C_2	(2.19) [25]
$C_2 \times (C_{13} \times_f C_2)$	$(52, 52, 26, \dots, 26, 4, 4)$	C_2	(2.19) [25]
$C_{29}\times_f C_2$	(58, 29,, 29, 2)	C_2	(2.18) [25]
$C_7^2 \times_f C_4$	$(196, 49, \dots, 49, 4, 4, 4)$	<i>C</i> ₄	(2.20) [25]

TABLE 5 (contd.)

G	Δ_G	G/S(G)	Reference
$C_4 \times D_{10}$	(40,,40,20,,20,8,,8)	C_2^2	(1.14)
$D_{10} imes D_{10}$	$(100, 50, \dots, 50, 25, \dots, 25, 20, 20, 10, \dots, 10, 4)$	C_2^2	(4.2) [25]
$(C_5 \times C_2^2) \times_{\scriptscriptstyle A} C_6$	(120, 60, 60, 40, 30, 30, 24, 20, 20, 15,, 15, 8, 6, 6)	C ₆	(1.14)
$C_2 \times (C_{17} \times_f C_4)$	(136, 136, 34,, 34, 8,, 8)	C_4	(4.2) [25]
$C_{17} \times_{\lambda} C_{8}$	(136, 136, 34,, 34, 8,, 8)	C_4	(4.2) [25]
$C_2 \times (C_{13} \times_f C_6)$	(156, 156, 26,, 26, 6,, 6)	C ₆	(1.14)
$C_{13} \times_{\lambda} C_{12}$	$(156, 156, 26, \stackrel{4}{\dots}, 26, 6, \stackrel{10}{\dots}, 6)$	C ₆	(1.14)
$C_2 \times (C_2^4 \times_f C_5)$	(160, 160, 32,, 32, 10,, 10)	C_5	(4.2) [25]
$(C_2^2 \times C_{13}) \times_{\scriptscriptstyle A} C_6$	(312, 104, 52,, 52, 24, 8, 6, 6, 6, 6)	C_6	(4.2) [25]
$C_{61}\times_f C_6$	(366, 61,, 61, 6,, 6)	C_6	(4.2) [25]
$C_2 \times (C_5^2 \times_f Q_8)$	(400, 400, 50,, 50, 16, 16, 8,, 8)	Q_{leph}	(4.2) [25]
$C_5^2 \times_{\lambda} (C_4 \times_{\lambda} C_4)$	(400, 400, 50,, 50, 16, 16, 8,, 8)	Q_8	(4.2) [25]
$C_2^6 \times_f C_9$	$(576, 64, \dots, 64, 9, \dots, 9)$	C_9	(4.2) [25]
$C_2 \times (C_5^2 \times_f \mathrm{DC}_3)$	(600, 600, 50,, 50, 24, 24, 12,, 12, 8,, 8)	DC_3	(1.14)
$C_5^2 \times_{\lambda} (C_3 \times_{\lambda} C_8)$	(600, 600, 50,, 50, 24, 24, 12,, 12, 8,, 8)	DC_3	(1.14)
$C_{61} \times_f C_{10}$	(610, 61,, 61, 10,, 10)	C_{10}	(4.14) [25]
$C_2^6 \times_{\lambda_1} (C_7 \times_f C_3)$	(1344, 192, 192, 192, 64, 64, 12,, 12, 7, 7)	$C_7 \times_f C_3$	(1.14)
$C_2^6 \times_{\lambda_2} (C_7 \times_f C_3)$	(1344, 192, 192, 192, 64, 64, 12,, 12, 7, 7)	$C_7 \times_f C_3$	(1.14)
$C_{11}^2 \times_f \mathrm{DC}_3$	(1452, 121,, 121, 12, 6, 6, 4, 4)	DC_3	(4.2) [25]
$(C_2^2 \times C_5^2) \times_{\lambda} SL(2,3)$	(2400, 800, 100,, 100, 96, 32, 16,, 16, 6,, 6)	SL(2, 3)	(1.14)
$C_{13}^2 \times_f (C_7 \times_{\scriptscriptstyle A} C_4)$	(4732, 169,, 169, 28, 14,, 14, 4, 4)	$C_7 \times_{\lambda} C_4$	(4.14) [25]
$C_{29}^2 \times_f \mathrm{SL}(2,5)$	(100920, 841,, 841, 120, 10,, 10, 6, 6, 4)	SL(2, 5)	(4.11) [25]

TABLE 6 (i) The finite groups satisfying r(G) = 17 and $\beta(G) > 5$

	(i) The finite groups satisfying $r(G) = 17$ and $\beta(G)$	/) 	
	Ø		
(ii)	The finite groups satisfying $r(G) = 17$, $\beta(G) \le 5$ and $0 \le 6$	$\leq \alpha(G) \leq 4$	
G	Δ_G	G/S(G)	Reference
C ₁₇	(17,,17)	1	(1.16)
$C_{31}\times_f C_2$	(62, 31,, 31, 2)	C_2	(2.18) [25]
$C_{43}\times_f C_3$	(129, 43,, 43, 3, 3)	C_3	(2.19) [25]
$C_{61} \times_f C_5$	$(305,61,\ldots^{12},61,5,5,5,5)$	C ₅	(4.1) [25]
$(A_5 \times C_5) \times_{\lambda} C_2$	(600, 300, 300, 40, 30, 25,, 25, 20, 20, 15, 15, 12, 6, 4)	C_2	(2.20) [25]
(iii) The fini	te groups satisfying $r(G) = 17$, $\beta(G) \le 5$, $5 \le \alpha(G) \le 10$	and $S(G)$ s	olvable
G	Δ_G	G/S(G)	Reference
$C_7 \times_{\lambda_1} D_8$	(56, 56, 28,, 28, 4, 4)	C_2^2	(4.2) [25]
$C_7 \times_{\lambda_2} D_8$	(56, 56, 28,, 28, 4, 4)	C_2^2	(4.2) [25]
$C_7 \times_{\lambda} Q_8$	(56, 56, 28,, 28, 4, 4)	C_2^2	(4.2) [25]
$(C_7 \times C_5) \times_{\lambda} C_4$	$(140, 70, 70, 70, 35, \dots, 35, 28, 14, 14, 14, 4, 4)$	C ₄	(4.2) [25]
$C_2^2 \times_{\lambda} (C_{21} \times_f C_2)$	(168, 84, 84, 84, 56, 28, 28, 28, 21,, 21, 4, 4)	Σ_3	(4.2) [25]
$(C_5 \times C_7) \times_{\lambda} C_6$	(210, 105, 105, 35,, 35, 30, 30, 15,, 15, 6, 6, 6)	C ₆	(4.2) [25]
$C_7^2 \times_{\lambda} C_6$	(294, 147, 147, 49,, 49, 42, 14, 14, 6, 6, 6, 6)	C ₆	(4.2) [25]
$C_{67} \times_f C_6$	$(402,67,\ldots,67,6,\ldots,6)$	C ₆	(4.2) [25]
$C_{71}\times_f C_7$	(497, 71,, 71, 7,, 7)	C_7	(4.5) [25]
$C_{73} \times_f C_8$	(584,73,,73,8,,8)	C_8	(4.8) [25]
$C_{73}\times_f C_9$	(657,73,,73,9,,9)	C ₉	(4.11) [25]
$C_{71}\times_f C_{10}$	$(710,71,\ldots,71,10,\ldots,10)$	C_{10}	(4.14) [25]
$C_{67} \times_f C_{11}$	$(737, 67, \dots, 67, 11, \dots, 11)$	C_{11}	(1.15)
$C_{31}^2 \times_f \mathrm{SL}(2,5)$	(115320, 961,, 961, 120, 10,, 10, 6, 6, 4)	SL(2,5)	(4.11) [25]

TABLE 7
(i) The finite groups satisfying $r(G) = 18$ and $\beta(G) > 6$

G	Δ_G	G/S(G) F	Reference
$C_3^4 \times_f C_8$	(648, 81,, 81, 8,, 8)	C ₈	(4.8) [25]
(ii) The	finite groups satisfying $r(G) = 18$, $\beta(G) \le 6$ and $0 \le \alpha$	(<i>G</i>) ≦ 4	
G	Δ_G	G/S(G) F	Reference
$C_2 \times C_3^2$	(18,,18)	1	(1.16)
$C_3\times (C_3^2\times_f C_2)$	$(54, 54, 54, 27, \dots, 27, 6, 6, 6)$	C_2	(2.20) [25
$(C_3 \times C_5) \times_{\lambda} C_4$	$(60, 60, 30, \dots, 30, 4, 4)$	C_2	(2.19) [25
$C_2 \times ((C_3 \times C_5) \times_f C_2)$	$(60, 60, 30, \dots, 30, 4, 4)$	C_2	(2.19) [25
$(C_3 \times C_{11}) \times_f C_2$	(66, 33,, 33, 2)	C_2	(2.18) [25
$C_2 \times (C_{19} \times_f C_3)$	$(114, 114, 38, \dots, 38, 6, 6, 6, 6)$	C_3	(4.1) [25]
$(C_3 \times C_{17}) \times_{\lambda} C_4$	$(204, 102, 51, \dots, 51, 12, 6, 4, 4)$	<i>C</i> ₄	(4.1) [25]
(iii) The finite gr	oups satisfying $r(G) = 18$, $\beta(G) \le 6$, $5 \le \alpha(G) \le 10$ an	d S(G) solval	ole
G	Δ_G	G/S(G) I	Reference
$C_6 \times \Sigma_3$	(36,,36,18,,18,12,,12)	C ₂	(4.2) [25]
$C_3 \times DC_3$	(36,,36,18,,18,12,,12)	C_2	(4.2) [25]
$C_2 \times (C_3 \times_{\lambda_1} D_8)$	(48,, 48, 24,, 24, 8,, 8)	C_2^2	(1.14)
$C_2\times (C_3\times_{\lambda_2}D_8)$	(48,,48,24,,24,8,,8)	C_2^2	(1.14)
$C_2 \times (C_3 \times_{\scriptscriptstyle{A}} Q_8)$	(48,, 48, 24,, 24, 8,, 8)	C_2^2	(1.14)
$C_3 \times_{\lambda} ((C_4 \times C_2) \times_{\lambda} C_2)$	(48,,48,24,,24,8,,8)	C_2^2	(1.14)
$(C_3 \times C_4 \times C_2) \times_{\lambda} C_2$	(48,,48,24,,24,8,,8)	C_2^2	(1.14)
$C_3 \times_{\lambda} (C_4 \times_{\lambda} C_4)$	$(48, \dots, 48, 24, \dots, 24, 8, \dots, 8)$	C_2^2	(1.14)
$C_{12} \times_{\lambda} C_4$	$(48, \dots, 48, 24, \dots, 24, 8, \dots, 8)$	C_2^2	(1.14)
$C_3^2 \times_{\lambda} (C_2 \times C_4)$	(72,72,36,,36,24,,24,18,18,12,,12,8,8)	$C_2 \times C_4$	(1.14)
$C_2 \times \Sigma_3 \times \Sigma_3$	$(72, 72, 36, \dots, 36, 24, \dots, 24, 18, 18, 12, \dots, 12, 8, 8)$	C_2^2	(1.14)

TABLE 7 (contd.)

\boldsymbol{G}	Δ_G	G/S(G) F	Reference
$C_3 \times (C_3^2 \times_f C_4)$	(108, 108, 108, 27,, 27, 12,, 12)	C4	(4.2) [25]
$C_3^3 \times_{\lambda} C_2^2$	(108, 54,, 54, 36, 27,, 27, 18,, 18, 12, 6, 4)	C_2^2	(4.2) [25]
$(C_3 \times C_5) \times_{\lambda} C_8$	(120, 120, 60, 60, 30,, 30, 24, 24, 12, 12, 8,, 8)	C ₄	(4.2) [25]
$C_2 \times ((C_3 \times C_5) \times_{\lambda} C_4)$	(120, 120, 60, 60, 30,, 30, 24, 24, 12, 12, 8,, 8)	C ₄	(4.2) [25]
$C_2 \times (C_2^2 \times_{\scriptscriptstyle A} D_{18})$	(144, 144, 72, 72, 48, 48, 24, 24, 18,, 18, 8,, 8)	Σ_3	(1.14)
$C_2 \times (C_2^2 \times_{\lambda} (C_3^2 \times_f C_2))$	(144, 144, 72, 72, 48, 48, 24, 24, 18,, 18, 8,, 8)	Σ_3	(1.14)
$(C_5 \times C_3^2) \times_{\lambda} C_4$	(180, 90, 90, 45,, 45, 20, 10, 10, 4, 4)	C_4	(4.2) [25]
$C_2 \times (C_{19} \times_f C_6)$	(228, 228, 38,, 38, 6,, 6)	C_6	(1.14)
$C_{19} \times_{\lambda} C_{12}$	(228, 228, 38,, 38, 6,, 6)	C_6	(1.14)
$C_2^4 \times_{\Lambda} (C_9 \times_f C_2)$	(228, 144, 96, 96, 96, 48,, 48, 9, 9, 9, 8,, 8)	Σ_3	(4.2) [25]
$C_2^4 \times_{\lambda} (C_3^2 \times_f C_2)$	(228, 144, 96, 96, 96, 48,, 48, 9, 9, 9, 8,, 8)	Σ_3	(4.2) [25]
$(C_3 \times C_{19}) \times_{\lambda} C_6$	(342, 171, 57,, 57, 18, 18, 9, 9, 6, 6, 6)	C ₆	(4.2) [25]
$(C_5 \times C_3^2) \times_{\lambda} (C_4 \times C_2)$	(360, 90, 90, 90, 72, 45,, 45, 40, 18, 18, 10, 8,, 8)	$C_2 \times C_4$	(1.14)
$(C_5 \times C_3^2) \times_{\lambda} Q_8$	$(360, 180, 180, 45, \dots, 45, 40, 20, \dots, 20, 4, 4)$	Q_8	(1.14)
$(C_3 \times C_{17}) \times_{\lambda} C_8$	(408, 204, 51,, 51, 24, 24, 24, 12, 12, 12, 8,, 8)	C_8	(1.14)
$C_{73}\times_f C_6$	$(438,73,\ldots,73,6,\ldots,6)$	C ₆	(4.2) [25]
$(C_3 \times C_2^4) \times_{\lambda} D_{10}$	(480, 240, 96, 96, 96, 48, 48, 48, 15,, 15, 8,, 8)	D_{10}	(1.14)
$(C_3 \times C_5^2) \times_{\lambda} Q_8$	(600, 300, 75,, 75, 24, 12,, 12, 4, 4)	Q_8	(4.2) [25]
$C_3^4 \times_{f_2} C_8$	(648, 81,, 81, 8,, 8)	C_8	(4.8) [25]
$C_3^4 \times_f C_{10}$	(810, 81,, 81, 10,, 10)	C_{10}	(4.14) [2:
$C_5^2 \times_{\lambda} (C_9 \times_{\lambda} C_4)$	(900, 450, 75,, 75, 36, 18,, 18, 4, 4)	DC_3	(1.14)
$(C_3 \times C_5^2) \times_{\lambda} DC_3$	(900, 450, 75,, 75, 36, 18,, 18, 4, 4)	DC_3	(1.14)
$(C_2^2 \times C_5^2) \times_{\lambda} DC_3$	$(1200, 400, 100, \dots, 100, 48, 16, 8, \dots, 8, 6, 6)$	DC_3	(1.14)
$C_3^4 \times_{\lambda_1} SD_{16}$	$(1296, 162, \dots, 162, 81, 81, 81, 36, 18, \dots, 18, 16, 8, 8, 8, 4)$	SD ₁₆	(1.14)
$C_3^4 \times_{\lambda_2} SD_{16}$	(1296, 162,, 162, 81, 81, 81, 36, 18,, 18, 16, 8, 8, 8, 4)	SD ₁₆	(1.14)

TABLE 8 (i) The finite groups satisfying r(G) = 19 and $\beta(G) > 7$

G	Δ_G	G/S(G)	Reference
$C_7^2 \times_{f_1} C_3$	$(147,49,\ldots,49,3,3)$	<i>C</i> ₃	(2.19) [25]

(ii) The finite groups satisfying r(G) = 19, $\beta(G) \le 7$ and $0 \le \alpha(G) \le 4$

G	Δ_G	G/S(G)	Reference
C ₁₉	(19,,19)	1	(1.16)
$(C_5 \times C_7) \times_f C_2$	$(70,35,\ldots,35,2)$	C_2	(2.18) [25]
$C_7^2 \times_h C_3$	$(147, 49, \dots, 49, 3, 3)$	C_3	(2.19) [25]
$C_7^2 \times_{f_3} C_3$	$(147, 49, \dots, 49, 3, 3)$	<i>C</i> ₃	(2.19) [25]
$C_{61} \times_f C_4$	$(244,61,\ldots,61,4,4,4)$	C ₄	(2.20) [25]
$C_{71}\times_f C_5$	$(355,71,\ldots,71,5,5,5,5)$	C_{s}	(4.1) [25]

(iii) The finite groups satisfying r(G) = 19, $\beta(G) \le 7$, $5 \le \alpha(G) \le 10$ and S(G) solvable

G	Δ_G	G/S(G)	Reference
$C_{79}\times_f C_6$	$(474,79,\ldots,79,6,\ldots,6)$	C ₆	(4.2) [25]
$C_{89} \times_f C_8$	$(712, 89, \dots, 89, 8, \dots, 8)$	C_8	(4.8) [25]
$C_{89}\times_f C_{11}$	$(979, 89, \dots, 89, 11, \dots, 11)$	C_{11}	(1.15)
$C_5^3 \times_{\lambda} DC_3$	$(1500, 375, 125, \dots, 125, 30, 15, 15, 12, 6, 4, 4)$	DC_3	(4.2) [25]
$(C_3^2 \times C_5^2) \times_{\lambda} \mathrm{SL}(2,3)$	(5400, 675, 225,, 225, 24, 18, 18, 9, 9, 6, 6, 4)	SL(2, 3)	(4.5) [25]
$C_{17}^2 \times_f \mathrm{SL}(2,3)$	$(6936, 289, \dots, 289, 24, 6, 6, 6, 6, 4)$	SL(2, 3)	(4.5) [25]
$C_{19}^2 \times_f (C_5 \times_{\scriptscriptstyle A} C_8)$	(14440, 361,, 361, 40, 10, 10, 8,, 8)	$C_5 \times_{\lambda} C_8$	(4.14) [25]
$C_{23}^2 \times_f (\mathrm{SL}(2,3) \cdot C_4)$	(25392, 529,, 529, 48, 8, 8, 8, 6, 6, 4)	$SL(2,3)\cdot C_4$	(4.8) [25]

TABLE 9 (i) The finite groups satisfying r(G) = 20 and $\beta(G) > 8$

Ø

G	Δ_G	G/S(G)	Reference
$C_2^2 \times D_{14}$	$(56, \dots, 56, 28, \dots, 28, 8, \dots, 8)$	C ₂	(4.1) [25]
$C_2 \times (C_7 \times_{\lambda} C_4)$	$(56, \dots, 56, 28, \dots, 28, 8, \dots, 8)$	C_z	(4.1) [25]
$C_{17} \times_{\lambda} C_4$	$(68, 68, 34, \dots, 34, 4, 4)$	C_z	(2.19) [25]
$C_2 \times (C_{17} \times_f C_2)$	$(68, 68, 34, \dots, 34, 4, 4)$	C_2	(2.19) [25]
$C_{37}\times_f C_2$	$(74,37,\ldots,37,2)$	C_2	(2.18) [25]
$(C_2^2 \times C_{13}) \times_f C_3$	$(156, 52, \dots, 52, 3, 3)$	<i>C</i> ₃	(2.19) [25]
$(C_5 \times C_{13}) \times_f C_4$	$(260, 65, \dots, 65, 4, 4, 4)$	C ₄	(2.20) [25]
$C_{11}^2 imes_f Q_8$	(968, 121,, 121, 8, 4, 4, 4)	Q_8	(4.1) [25]

(iii) The finite groups satisfying r(G) = 20, $\beta(G) \le 8$, $5 \le \alpha(G) \le 10$ and S(G) solvable

G	Δ_G	G/S(G)	Reference
$C_2^2 \times C_5$	$(20,\ldots,20)$	1	(1.16)
$C_5 \times D_{10}$	$(50,\ldots,50,25,\ldots,25,10,\ldots,10)$	C_2	(4.2) [25]
$C_5 \times A_4$	$(60, \dots, 60, 20, \dots, 20, 15, \dots, 15)$	C_3	(4.2) [25]
$D_{10} imes D_{14}$	(140, 70,, 70, 35,, 35, 28, 20, 14, 14, 14, 10, 10, 4)	C_2^2	(4.2) [25]
$C_2^4 \times_{\scriptscriptstyle{\Lambda}} D_{\scriptscriptstyle{12}}$	(192, 192, 64,, 64, 32, 32, 16,, 16, 6, 6)	Σ_3	(1.14)
$C_2^4 \times_{\lambda} DC_3$	(192, 192, 64,, 64, 32, 32, 16,, 16, 6, 6)	Σ_3	(1.14)
$C_2\times (C_5^2\times_f C_4)$	$(200, 200, 50, \dots, 50, 8, \dots, 8)$	<i>C</i> ₄	(4.2) [25]
$C_5^2 \times_{\lambda} C_8$	$(200, 200, 50, \dots, 50, 8, \dots, 8)$	C_4	(4.2) [25]
$C_7^2 \times_{\lambda} \Sigma_3$	(294, 98,, 98, 49,, 49, 14,, 14, 3)	Σ_3	(4.2) [25]
$C_2\times (C_5^2\times_f C_6)$	(300, 300, 50,, 50, 12,, 12)	C ₆	(1.14)
$C_5^2 \times_{\lambda} C_{12}$	$(300, 300, 50, \dots, 50, 12, \dots, 12)$	C ₆	(1.14)

Table 9	(contd.)
---------	----------

G	Δ_G	G/S(G)	Reference
$C_7^2 \times_{\lambda} D_8$	(392, 98,, 98, 49, 49, 49, 28, 28, 14,, 14, 8, 4)	D_8	(1.14)
$(C_2^2 \times C_{19}) \times_{\lambda} C_6$	(456, 152, 76,, 76, 24, 8, 6, 6, 6, 6)	C ₆	(4.2) [25]
$(C_5 \times C_{17}) \times_{\lambda} C_8$	(680, 170, 85,, 85, 40, 10, 8,, 8)	C_8	(4.8) [25]
$C_{97} \times_f C_8$	(776, 97,, 97, 8,, 8)	C_8	(4.8) [25]
$C_{101}\times_f C_{10}$	(1010, 101,, 101, 10,, 10)	C_{10}	(4.14) [25]
$C_2 \times (C_7^2 \times_f \mathrm{DC}_3)$	(1176, 1176, 98,, 98, 24, 24, 12,, 12, 8,, 8)	DC ₃	(1.14)
$C_7^2 \times_{\lambda} (C_3 \times_{\lambda} C_8)$	(1176, 1176, 98,, 98, 24, 24, 12,, 12, 8,, 8)	DC_3	(1.14)
$C_{13}^2 \times_f DC_3$	(2028, 169,, 169, 12, 6, 6, 4, 4)	DC_3	(4.2) [25]
$(C_2^2 \times C_7^2) \times_{\lambda} SL(2,3)$	(4704, 1568, 196,, 196, 96, 32, 16,, 16, 6,, 6)	SL(2, 3)	(1.14)

REMARK. In [25] Table 3, The following group is missing:

G	Δ_G	G/S(G)
$\operatorname{Hol}(2^{5}\Gamma_{5}a_{2},C_{3})$	(96, 96, 16,, 16, 6,, 6)	$C_2^4 \times_f C_3$

2. Preliminaries

We will often use the preliminary lemmas of [25]. Also we utilize the following lemmas:

LEMMA 1.1. Let N be a normal subgroup of G such that $G = N \times_{\lambda} T$. Then:

- $(1) r_G(T) = r(T),$
- (2) $r_G(nT) \ge r(T)$ for each $n \in N$.

PROOF. (1) Set $T = \bigcup_{i=1}^{r} \operatorname{Cl}_{T}(h_{i})$. We have $\bigcup_{g \in G} T^{g} = \bigcup_{i=1}^{r} \operatorname{Cl}_{G}(h_{i})$, and if h_{i} is conjugate to h_{j} in G, then there exists $nh \in NT$ such that $h_{i}^{nh} = h_{j}$, with $n \in N$ and $h \in T$, therefore $h_{i}^{-1}h_{i}^{h^{-1}} = h_{i}^{-1}h_{i}^{n} = [h_{i}, n] \in N \cap T = 1$, i.e. $\operatorname{Cl}_{T}(h_{i}) = \operatorname{Cl}_{T}(h_{i})$ and i = j. Thus $r_{G}(T) = r(T)$.

(2) This result is an immediate consequence of the fact that $nh \sim_G n'h'$, $n, n' \in N$, $h, h' \in T$, implies $h \sim_T h'$.

LEMMA 1.2. If T is a nilpotent S_{π} -subgroup of g, then G has a normal π -complement if and only if $r_G(T) = r(T)$. In particular, if $\pi = \{p\}$ and P is a Sylow p-subgroup of G, then G has a normal p-complement iff $r_G(P) = r(P)$.

PROOF. The non-trivial implication follows from [8] corollary 12.5 (p. 102).

LEMMA 1.3. Let P be a Sylow p-subgroup of G. Then we have the following affirmations:

- (1) $r_G(C_G(P)) = r_{N_G(P)}(C_G(P)).$
- (2) $|\operatorname{Cl}_G(c)| = \nu_p(G) \cdot |\operatorname{Cl}_{N_G(P)}(x)| \cdot (1/|C_G(x)| \cdot C_{N_G(P)}(x)|)$ for each $x \in N_G(P)$.
- (3) If P is abelian, $N_G(P) = P \times_{\lambda} T$ and $C_G(P) = P \times T_1$ with $T_1 \leq T$, then we have $T_1 \leq N_G(P)$ and

$$r_{N_G(P)}(C_G(P)) = r_{N_G(P)}(T_1^*) + r_{N_G(P)}(P) + r_{N_G(P)}(P^*) \cdot r_{N_G(P)}(T_1^*).$$

Furthermore, if $P \leq Z(N_G(P))$, then $r_G(N_G(P)) = r(N_G(P)) = |P| \cdot r(T)$.

PROOF. These results are immediate consequences of a well-known theorem of Burnside (cf. [7] Theorem 1.1, p. 240).

REMARK. When P is an abelian group, the analysis of $\Delta_{N_G(P)}$ is developed using Lemma 2.11 of [25].

LEMMA 1.4. Let G be a group whose elements have primary power orders. Let $|G| = p_1^{a_1} \cdots p_i^{a_i}$ be the decomposition in primes factors of the order of G, with $p_i \neq p_j$ for each $i \neq j$, and let P_i be a Sylow p_i -subgroup of G for every i = 1, ..., t. Then G has exactly $(|Z(P_i)| - 1)/(|N_G(P_i)/P_i|)$ conjugacy classes of cardinality $|G/P_i|$ for each i = 1, ..., t. In particular, if the Sylow subgroups P_i are abelian, then

$$r(G) = 1 + \sum_{i=1}^{t} (|Z(P_i)| - 1)/(|N_G(P_i)/P_i|).$$

PROOF. Let $P \in \operatorname{Syl}_p(G)$. The condition that G does not have elements non-divisible by two primes numbers order implies that $C_G(P)$ is a p-subgroup of G and that if $N_G(P) = P \times_{\lambda} T$, then T acts f.p.f. over P, that is, $N_G(P) = P \times_{f} T$. Since $C_G(P) \subseteq N_G(P)$ and $N_G(P)$ is a Frobenius group of kernel P, it follows that either $C_G(P) \subseteq P$ or $P < C_G(P)$, consequently $C_G(P) = Z(P)$. Moreover, for each $x \in Z(P)^*$, we have $|C|_{N_G(P)}(x)| = |x^T| = |T|$, so

$$r_G(Z(P)) = r_G(C_G(P)) = r_{N_G(P)}(C_G(P)) = 1 + (|Z(P)| - 1)/|N_G(P)/P|,$$

but $Cl_G(y) \cap Z(P)^* \neq \emptyset$ iff $P^s \leq C_G(y)$ for some $g \in G$, that is, if $|C_G(y)| = C_G(y)$

 $p^a = |P|$. Therefore $r_G(Z(P)) - 1 = (|Z(P)| - 1)/(|N_G(P)/P|)$ is the number of conjugacy classes of elements of G whose cardinality is $|G|/p^a$.

EXAMPLES. (1) By observing the orders of elements of A_5 , it is immediate that $N_{A_5}(C_5) \simeq D_{10}$, $N_{A_5}(C_3) \simeq \Sigma_3$ and $N_{A_5}(C_2^2) \simeq A_4$. Then, if $|P_1| = 5$, $|P_2| = 3$ and $|P_3| = 4$, we have

$$r(A_5) = 1 + (5-1)/(5\cdot2/5) + (3-1)/(3\cdot2/3) + (4-1)/(4\cdot3/4)$$

= 5.

- (2) Set G = PSL(2,7). Then we have $N_G(C_7) = C_7 \times_f C_3$, $N_G(C_3) \simeq \Sigma_3$ and $N_G(D_8) \simeq D_8$, so G has
 - $(7-1)/(7\cdot3/7) = 2$ conjugacy classes of cardinality 168/7 = 24,
 - (2-1)/(8/8) = 1 conjugacy classes of cardinality 168/8 = 21,
 - (3-1)/(6/3) = 1 conjugacy classes of cardinality 168/3 = 56.
- (3) Consider the group $G = C_2^4 \times_{\lambda} A_5$ with A_5 acting transitively over C_2^4 . Then $N_G(C_5) \approx D_{10}$, $N_G(C_3) \approx \Sigma_3$ and if P is a Sylow 2-subgroup of G, then we have $N_G(P) = P \times_{\lambda} C_3 = C_2^4 \times_{\lambda} A_4$. Thus G has
 - $(5-1)/(5\cdot2/5) = 2$ conjugacy classes of cardinality |G|/5,
 - (3-1)/(6/3) = 1 conjugacy classes of cardinality |G|/3,
 - $(4-1)/(2^6 \cdot 3/2^6) = 1$ conjugacy classes of cardinality $|G|/2^6$.

Assume the hypothesis of Lemma 1.4; in general, non-abelian Sylow subgroups can exist. Now if $x \in G^*$ and $o(x) = p^e$, with p prime, then $C_G(x)$ is a p-group, so there exists $P \in \operatorname{Syl}_p(G)$ such that $C_G(x) \leq P$. Consequently $|C_G(x)| = |C_P(x)|$ and $|C_G(x)| = |C_P(x)| \cdot |G/P|$, that is, the cardinal of a conjugacy class of G which is different from |G/P| depends only on Δ_P . Thus, the possible values of the tuple Δ_G are bounded if we know previously Δ_P , when P is any Sylow subgroup of G. In general, we will write

$$r(G) = 1 + \sum_{i=1}^{t} r_G(Z(P_i)^*) + \sum_{i=1}^{t} r_G^*(P_i - Z(P_i))$$

in which we define $r_G^*(P_i - Z(P_i)) = r_G(P_i - Z(P_i)) - \mu_{P_i}$ with

$$\mu_{P_i} = |\{\operatorname{Cl}_G(g) \mid \operatorname{Cl}_G(g) \cap Z(P_i) \neq \emptyset = \operatorname{Cl}_G(g) \cap (P_i - Z(P_i))\}|,$$

that is,

$$r(G) = 1 + \sum_{i=1}^{t} (|Z(P_i)| - 1)/(|N_G(P_i)/P_i|) + \sum_{i=1}^{t} r_G^*(P_i - Z(P_i)).$$

Naturally $r_G(P_i - Z(P_i)) \le r_{P_i}(P_i - Z(P_i))$.

EXAMPLES. (1) Consider the group G = PSL(2,7). Let $P \simeq D_8$ a Sylow 2-subgroup of G. Then $\Delta_P = (8,8,4,4,4)$, so $\Delta_{D_8-Z(D_8)}^{D_8} = (4,4,4)$ and we have

$$168 = 1 + 168/8 + 168/7 + 168/3 + \sum_{i=1}^{s} 7 \cdot 3 \cdot 8/2^{m_i} \quad \text{with } 2^{m_i} = 4$$

for each *i*, consequently s = 1 and $\Delta_{PSL(2,7)} = (168, 8, 7, 7, 4, 3)$.

(2) Consider the group $G = M_9 = PGL^*(2, 9)$, which is the unique extension of PSL(2, 9) by C_2 with a 2-Sylow of the type SD₁₆. We have

$$N_{M_0}(C_5) \simeq C_5 \times_f C_4$$
, $N_{M_0}(C_3^2) \simeq C_3^2 \times_f Q_8$ and $N_{M_0}(SD_{16}) \simeq SD_{16}$,

therefore M_9 has a unique conjugacy class of elements of order 5, a unique conjugacy class of elements of order 3 and a unique conjugacy class of elements of order 2 that are central in a 2-Sylow of M_9 . We have

$$\Delta_{\text{SD}_{16}-Z(\text{SD}_{16})}^{\text{SD}_{16}} = (8, 8, 8, 4),$$

so we consider the equations:

(1)
$$720 = 1 + 720/16 + 720/9 + 720/5 + 9 \cdot 5 \cdot 2 \cdot t_1 + 9 \cdot 5 \cdot 4 \cdot t_2,$$
$$r(G) = 4 + t_1 + t_2.$$

(1) implies $5 = t_1 + 2t_2$, hence $(t_1, t_2) \in \{(1, 2), (3, 1)\}$ and the cardinals of the centralizers of the elements of these possible classes are (8, 4, 4) and (8, 8, 8, 4), being r(G) = 7 or 8, respectively. On the other hand, $\Delta_{A_6} = (360, 9, 9, 8, 5, 5, 4)$, hence $r(M_9) = 2 \cdot s + (7 - s)/2$ with $s \ge 3$ (cf. [25] Lemma 2.9), therefore $r(M_9) \ge 8$ and necessarily $r(M_9) = 8$. Thus

$$\Delta_{M_9} = ((720, 16, 9, 5), (8, 8, 8, 4)) = (720, 16, 9, 8, 8, 8, 5, 4).$$

(3) Let us consider the group $G = C_2^4 \times_{\lambda} A_5$ with A_5 acting transitively over C_2^4 , let $P \in \text{Syl}_2(G)$, then $\Delta_{P-Z(P)}^P = (16, \frac{15}{2}, 16)$. Now observing the equations

$$16 \cdot 60 = 1 + 960/5 + 960/5 + 960/3 + 960/2^6 + (960/16) \cdot t$$

and

$$r(G) = 5 + t,$$

it follows that t = 4 and $\Delta_G = (960, 64, 16, 16, 16, 16, 5, 5, 3)$.

LEMMA 1.5. Set $G = P\Gamma L(2, 9)$. Then we have

$$\Delta_G = (1440, 48, 40, 32, 18, 16, 16, 10, 10, 8, 8, 8, 6).$$

$$r(G) = 13$$
, $\beta(G) = 1$, $G/S(G) \simeq C_2^2$, $S(G) \simeq A_6$ and $\alpha(G) = 8$.

PROOF. We know that $G/A_6 \simeq C_2^2$ and that G has exactly three normal subgroups of index 2: $N_1 \simeq \Sigma_6$, $N_2 \simeq PGL(2,9)$ and $N_3 \simeq M_9$. Besides

$$\Delta_{N_1} = (720, 48, 48, 18, 18, 16, 8, 8, 6, 6, 5),$$

$$\Delta_{N_2} = (720, 20, 16, 10, 10, 10, 10, 9, 8, 8, 8),$$

$$\Delta_{N_3} = (720, 16, 9, 8, 8, 8, 5, 4).$$

Obviously, $r(G) = r_G(S(G)) + r_G(N_1 - S(G)) + r_G(N_2 - S(G)) + r_G(N_3 - S(G))$ and we have $r(G) = 2s_i + (r(N_i) - s_i)/2$, where s_i is the number of conjugacy classes of N_i fixed by the automorphism $\psi_i \colon N_i \to N_i$ defined by $\psi_i(x) = x^{g_i}$ for each $x \in N_i$, with g_i an element of G such that $g = N_i \langle g_i \rangle$.

We have $N_1 = S(N_1) \cup (N_1 - S(N_1))$, $\Delta_{S(N_1)}^{N_1} = (720, 18, 18, 16, 8, 5)$ and $\Delta_{N_1-S(N_1)}^{N_1} = (48, 48, 8, 6, 6)$, so $s_1 \ge 5$ and $r(G) \in \{13, 16, 19, 22\}$. In [16] it is proved that $s_1 = 5$ and now it is immediate to conclude that $\Delta_{S(G)}^G = (1440, 32, 19, 16, 10)$, $\Delta_{N_1-S(G)}^G = (48, 16, 6)$, $\Delta_{N_2-S(G)}^G = (8, 8)$ and $\Delta_{N_3-S(G)}^G = (40, 10, 8)$. Thus we obtain

$$\Delta_G = (1440, 48, 40, 32, 18, 16, 16, 10, 10, 8, 8, 8, 6)$$
 and $\alpha(G) = 13 - 5 = 8$.

LEMMA 1.6. (1) If G is a group such that $PSL(3,4) \triangleleft G \leq Aut(PSL(3,4))$, then $r(G) \geq 14$.

(2)
$$\Delta_{PGL(2,11)} = (20160, 24, 20, 12, \dots, 12, 11, 10, \dots, 10), r(PGL(2, 11)) = 13$$
 and $\alpha(G) = 6$.

PROOF. These results rely on simple matrix calculations and using the tuples $\Delta_{PSL(3,4)} = (20160, 64, 16, 16, 16, 9, 7, 7, 5, 5), \Delta_{PSL(2,11)} = (660, 12, 11, 11, 6, 6, 5, 5)$ and Lemma 2.9(iii) and (iv) from [25].

Let Γ be the family of all finite nilpotent groups. We define $\psi_{11} = \Phi_{11} \cap \Gamma$.

LEMMA 1.7.

$$\psi_{11} = 2^5 \Gamma_4 \cup \{2^5 \Gamma_3 a_i \mid 1 \le i \le 3\} \cup \{2^5 \Gamma_3 c_i \mid 1 \le i \le 2\} \cup \{2^5 \Gamma_3 d_i \mid 1 \le i \le 2\}.$$

Proof. Cf. [24].

In Lemmas 2.18, 2.19 and 2.20 from [25], all finite groups satisfying $1 \le \alpha(G) \le 3$ are classified. In Lemma 4.1 from [25], we obtain the finite groups satisfying $\alpha(G) = 4$ and with S(G) solvable. In the following, we will obtain all finite groups satisfying $\alpha(G) = 4$.

LEMMA 1.8. Let G be a finite group with S(G) non-solvable and satisfying $\alpha(G) = 4$. Then either G = PGL(2,7) or $G = (PSL(2,7) \times H) \times_{\lambda} C_2$ with $PSL(2,7)C_2 = PGL(2,7)$ and $H \times_{\lambda} C_2 = H \times_f C_2$, being r(G) = 6 + 3|H|.

PROOF. We have $r(G/S(G)) \le 5$. If $r(G/S(G)) = 5 = \alpha(G) + 1$, then $|C_G(x)| = |C_{\bar{G}}(\bar{x})|$ for each $x \in G - S(G)$ and S(G) is solvable by Lemma 2.3 from [25], that is impossible.

If r(G/S(G)) = 4, then G/S(G) is isomorphic to one of the groups C_4 , C_2^2 , D_{10} , and A_4 .

Suppose $G/S(G) = \bar{G} = \langle \bar{a} \rangle \simeq C_4$. Then

$$\alpha(G) = 4 = r_G(aS(G)) + r_G(a^{-1}S(G)) + r_G(a^2S(G))$$

forces that $r_G(aS(G)) = 1$, hence $C_G(a) = \langle a \rangle$ is isomorphic to C_4 and S(G) is solvable, impossible.

Suppose $\bar{G} = \langle \bar{a}_1 \rangle \times \langle \bar{a}_2 \rangle \simeq C_2^2$. Then

$$4 = r_G(a_1S(G)) + r_G(a_2S(G)) + r_G(a_1a_2S(G))$$

implies that $r_G(aS(G)) = 1$ for some $a \in \{a_1, a_2, a_1a_2\}$, hence $|C_G(a)| = 4$ and if P is a 2-Sylow subgroup of G, then there is $\langle b \rangle \subseteq P$ such that $P/\langle b \rangle \simeq C_2$. We have $o(\bar{b}) = 2$. hence $b^2 \in S(G)$ and S(G) has cyclic Sylow's 2-subgroups, so S(G) is solvable, impossible.

Assume $\bar{G} = \langle \bar{a} \rangle \times_f \langle \bar{b} \rangle \simeq D_{10}$. Then

$$4 = r_G(aS(G)) + r_G(a^2S(G)) + r_G(bS(G))$$

and we have $r_G(aS(G)) = 1$, so $C_G(a) = \langle a \rangle \simeq C_5$ acts f.p.f. over S(G), therefore S(G) is solvable, impossible.

If $\bar{G} = \langle \bar{a}_1, \bar{a}_2 \rangle \times_f \langle \bar{b} \rangle = A_4$, then $r_G(bS(G)) = 1$, hence $C_G(b) \approx C_3$ and S(G) is solvable impossible. Thus $r(\bar{G}) \leq 3$ and \bar{G} is isomorphic to one of the following groups: Σ_3 , C_3 , or C_2 .

If $\bar{G} = \langle \bar{a} \rangle \times_f \langle \bar{b} \rangle \simeq \Sigma_3$, then $4 = r_G(aS(G)) + r_G(bS(G))$ and S(G) non-solvable implies $r_G(aS(G)) = 2 = r_G(bS(G))$, hence $|C_G(b)| = 4$ and again S(G) has cyclic 2-Sylow, that is impossible.

If $\bar{G} = \langle \bar{b} \rangle \approx C_3$, then $r_G(bS(G)) = 2$ and $\Delta_b = (6, 6)$, hence Lemma 2.13(ii) from [25] implies that S(G) is solvable.

Thus we conclude that G/S(G) is isomorphic to C_2 . If there exists $g \in G - S(G)$ such that $o(g) = 2^e$ and $|C_G(g)| = 2^n \cdot m$ with $n \le 3$, then G has sectional range at most 4 and necessarily either G = PSL(2,7) or $G = (PSL(2,7) \times H) \times_{\lambda} C_2$ (cf. [18]). Assume that G has sectional range greater than or equal to 5, and let g be a 2-element in G - S(G). Now, we consider the equation:

$$1/2 = 1/2\lambda_1 + 1/2\lambda_2 + 1/2\lambda_3 + 1/2\lambda_4$$
 with $\Delta_g = (2\lambda_1, \dots, 2\lambda_4)$.

If $2\lambda_4 \ge 8$, then $\Delta_{G-S(G)}^G = (8, 8, 8, 8)$, impossible, hence $2\lambda_4 = 6$. If $2\lambda_3 \ge 12$, then $1/2 \le 1/6 + 3/12$, impossible too, hence $2\lambda_3 = 6$ and $\Delta_g = (24, 8, 6, 6)$ or (12, 12, 6, 6), therefore $|C_G(g)| = 2^n \cdot m$ with $n \le 3$, which is impossible.

REMARKS. (1) If A is a non-abelian simple normal subgroup of G and suppose that $G = (A \times H) \times_{\lambda} C_2 = (A \times H) \times_{\lambda} \langle b \rangle$ with $HC_2 = H \times_f C_2$ and $AC_2 \neq A \times C_2$, then $\alpha(G) = \alpha(AC_2)$ and r(G) = 2s + (r(A)|H| - s)/2, where s is the number of conjugate classes $Cl_A(a)$ of A such that $Cl_A(a)^b = Cl_A(a)$, i.e. $s = \alpha(AC_2)$ (it is an immediate consequence of [25] Lemma 2.9).

(2) If $G/S(G) = \langle \bar{g} \rangle = C_p$, with p prime, then we have $\alpha(G) = s \cdot (p-1)$, where s is the number of conjugacy classes of G fixed by the automorphism $\psi \colon S(G) \to S(G)$ defined by $\psi(x) = x^s$ for each $x \in S(G)$. In particular, $\alpha(G) = s$, in case p = 2.

LEMMA 1.9. Let V be a vector space over Z_p of dimension n and let $f \in \operatorname{Aut}_{Z_p}(V)$ be such that $f^{p'} = 1$ for some $t \in \mathbb{N}$. Then $|C_V(f)| \ge p^e$, with e a natural number satisfying $e \ge n/m \ge n/p^e$, where m is the degree of the minimal polynomial of f over Z_p . In particular, if p = 2 and o(f) = 2, then $|C_V(f)| \ge 2^k$ if n = 2k, and $|C_V(f)| \ge 2^{k+1}$ if n = 2k+1 for some natural number k.

PROOF. We know that there exist f-invariable subspaces V_1, \ldots, V_s of V and polynomials $q_1(x), \ldots, q_s(x) \in \mathbb{Z}_p[x]$ such that $V = V_1 \oplus \cdots \oplus V_s$, $q_i(x)$ divides $q_{i+1}(x)$ for each $i = 1, \ldots, s-1$, $q_s(x)$ is the minimal polynomial of f, $q_i(x) = \text{pol. min.}(f_{|V_i})$ and $q_1(x)q_2(x)\cdots q_s(x)$ is the characteristic polynomial of f. As f is a root of the polynomial $x^{p'} - 1 = (x-1)^{p'}$, the minimal polynomial pol. min.(f) divides $(x-1)^{p'}$, so $m \leq p'$.

Let us consider the *p*-group $G = \operatorname{Hol}(V,\langle f \rangle)$. We have $V_i \subseteq G$ for each *i*, hence $V_i \cap Z(G) \neq 1$ and therefore $|C_{V_i}(f)| \geq p$ for every *i*. In consequence $|C_V(f)| \geq p^s$. Besides

$$1 \leq \deg(q_1(x)) \leq \cdots \leq \deg(q_s(x)) = m \leq p'$$

and

$$\operatorname{degr.}(q_1) + \cdots + \operatorname{degr.}(q_s) = n,$$

hence $n \le s \cdot \deg(q_s) = sm$, i.e. $s \ge n/m$.

EXAMPLE. Suppose $f \in \operatorname{Aut}(C_3^4)$ and o(f) = 3, then $|C_{C_3^4}(f)| \ge 3^e$, with $e \ge 4/3$, so $e \ge 2$ and $|C_{C_3^4}(f)| \ge 3^2$.

LEMMA 1.10. Let G be a group with S(G) abelian and let $x \in G - S(G)$. Put $\bar{G} = G/S(G)$. Then $r_G(xS(G)) \ge o(\bar{x}) \cdot |C_G(x) \cap S(G)|/|C_{\bar{G}}(\bar{x})|$.

PROOF. Let $Cl_G(xz_j)$, $j=1,\ldots,t$ be the conjugacy classes of elements of G which have non-empty intersection with xS(G). Then $t=r_G(xS(G))$ and $1/|C_{\bar{G}}(\bar{x})| = \sum_{j=1}^{t} 1/|C_G(xz_j)|$ (cf. [25] Lemma 2.1(ii)). Moreover, $o(\bar{x}\bar{z}_j) = o(\bar{x})$ and $C_G(xz_j) \cap S(G) = C_G(x) \cap S(G)$, because S(G) is an abelian group, therefore

$$|C_G(xz_i)| \ge o(\bar{x}) \cdot |C_G(x) \cap S(G)|$$
 for every j

and consequently $t \ge o(\bar{x}) \cdot |C_G(x) \cap S(G)|/|C_{\bar{G}}(\bar{x})|$.

Lemma 1.10 is generally used with Lemma 1.9, fixing the possible values of $r_G(xS(G))$, then the cardinal of $C_G(x) \cap S(G)$ is bounded, and if $o(\bar{x})$ is the power of a prime number p, the situations that originate from fixing the possible orders of $C_G(x) \cap O_p(S(G))$ (= $C_G(x) \cap S(G)$) are now analyzed.

LEMMA 1.11. Let G be a finite group and let S_1, \ldots, S_n be normal sets of G. Then

$$r_G\left(\bigcup_{i=1}^n S_i\right) = \sum_{i=1}^n \sum_{1 \leq i_1 < \dots < i_t \leq n} r_G\left(\bigcap_{k=1}^t S_{i_k}\right) (-1)^{t+1}.$$

PROOF. This result follows immediately from an inductive process over n and from the fact that $r_G(S_1 \cup S_2) = r_G(S_1) + r_G(S_2) - r_G(S_1 \cap S_2)$.

LEMMA 1.12. Let G be a group such that S(G) is abelian. Set

$$\bar{G} = G/S(G) = \operatorname{Cl}_{\bar{G}}(\bar{x}_1) \dot{\cup} \cdots \dot{\cup} \operatorname{Cl}_{\bar{G}}(\bar{x}_n) \quad and \quad \operatorname{Cl}_{\bar{G}}(\bar{x}_i) = \{\bar{x}_{i_1}, \dots, \bar{x}_{i_n}\}.$$

Then $S_i = (C_G(x_{i_1}) \cap S(G)) \cup \cdots \cup ((C_G(x_{i_n}) \cap S(G)))$ is a normal set in G and

$$r(G) = \alpha(G) + r_G \left(\bigcup_{i=1}^n S_i \right) + \left(|S(G)| - \left| \bigcup_{i=1}^n S_i \right| \right) / |G/S(G)|.$$

PROOF. Let g be an element of G and set $\bar{x}_{ij}^{\bar{g}} = \bar{x}_{ik}$, then $x_{ij}^{\bar{g}} = x_{ik} \cdot z$ for some $z \in S(G)$ and $(C_G(x_{ij}) \cap S(G))^g = C_G(x_{ik}z) \cap S(G) = C_G(x_{ik}) \cap S(G)$. Therefore S_i is a normal set in G. Besides, if $z \in S(G) - \bigcup_{i=1}^n S_i$, then $z^a = z^b$ with $a, b \in G - S(G)$ if and only if $z \in C_G(ab^{-1}) \cap S(G)$, so $\bar{a}\bar{b}^{-1} = \bar{1}$ and aS(G) = bS(G). Therefore $|Cl_G(z)| = |G/S(G)|$ and thus we get the desired formula.

Lemmas 1.11 and 1.12 are generally used to determine r(G), once the value of $\alpha(G)$ has been fixed.

LEMMA 1.13. Let G be a finite group such that S(G) is not solvable and $\beta(G) = r(G) - j$ with $1 \le j \le 11$. Then G is isomorphic to one of the following groups: A_5 , A_6 , A_7 , Σ_5 , Σ_6 , $A_5 \times C_2$, $PSL(2,7) \times C_2$, PSL(2,7), PGL(2,7), M_9 ,

PGL(2, 9), SL(2, 8), PFL(2, 8), PSL(2, 11), PSL(2, 13), PSL(2, 17), PSL(3, 4), M_{11} , Sz(8), $(A_5 \times C_3) \times_{\lambda} C_2$ with $A_5 C_2 \simeq \Sigma_5$ and $C_3 C_2 \simeq \Sigma_3$, M_{22} , PSL(3, 3), and PSL(2, 19).

PROOF. We'll reason in a similar way as in Theorem 3.2 of [25].

If S(G) = G, then G is completely reducible, hence $G = G_1 \times \cdots \times G_s \times Z(G)$ with the G_i simple non-abelian groups. Therefore

$$5^{s} \cdot |Z(G)| - (s + |Z(G)| - 1) = r(G) - \beta(G) = j \le 11$$

and necessarily s = 1 and $|Z(G)| \le 2$. Thus either $G \in \{A_5 \times C_2, PSL(2,7) \times C_2\}$ or G is a simple group with $r(G) \le 12$, hence from [1], G is isomorphic to one of the following groups: A_5 , PSL(2,7), A_6 , PSL(2,11), A_7 , PSL(2,13), SL(2,8), PSL(3,4), M_{11} , Sz(8), PSL(2,17), M_{22} , PSL(3,3), PSL(2,19).

Now we can suppose S(G) < G, that is, $\alpha(G) \ge 1$. Further, we deduce from Lemma 2.18 of [25] that $\alpha(G) \ge 3$. If $\alpha(G) = 3$, then Lemma 2.20 of [25] implies that G is isomorphic to one of the following groups: M_9 , Σ_5 , $(A_5 \times C_3) \times_{\lambda} C_2$.

If $\alpha(G) = 4$, then it follows from Lemma 1.8 that $G \simeq PGL(2,7)$. Suppose $\alpha(G) \ge 5$. We have $3\beta(G) + \alpha(G) \le 11$ from Lemma 3.1 of [25], so $\beta(G) = 1$ or 2. If $\beta(G) = 2$, then $r(G) \le 11 + 2 = 13$. Let $L_1 \ne L_2$ be the minimal normal subgroups of G, then $S(G) = L_1 \times L_2$. If L_1 and L_2 are not solvable, then

$$r_G(S(G)) \ge 1 + r_G(L_1^*) + r_G(L_2^*) + r_G(L_1^*) \cdot r_G(L_2^*) \ge 1 + 3 + 3 + 3 \cdot 3 = 16,$$

but $\alpha(G) \ge 5$ implies $r_G(S(G)) \le 13-5=8$, which is impossible. Thus, $L_1 \simeq C_p^t$ for some prime p and L_2 is non-solvable and isomorphic to $A \times \cdots \times A$ with A a non-abelian simple group. Reasoning as above, we now have $r_G(S(G)) \ge$ $1+1+2\cdot r_G(L_2^*)$. If $e\geq 2$, then $A\times A$ has elements of orders 1, 2, p_1 , p_2 , $2p_1$, $2p_2$, p_1 p_2 , where $p_1 \neq p_2$ are two odd prime factors of |A|, thus $r_G(L_2^*) \geq 7$, that is impossible. Therefore e = 1 and $L_2 = A$ is a simple group. We have $2(1+r_G(L_2^*)) \le 13-5=8$, so $r_G(L_2^*) \le 3$ and $|\{o(g)|g \in L_2^*\}| \le 3$. Consequently $L_2 \simeq A_5$ by Lemma 2.12 of [25]. Besides, $L_1 \leq C_G(L_2)$. Suppose $C_G(L_2) = L_1$, then $G/L_1 \leq \operatorname{Aut}(L_2) = \Sigma_5$, hence $G/S(G) \approx C_2$, and $r_G(L_1^*) \geq C_2$ (p'-1)/2, therefore $(p'-1)/2 \le 1$, and necessarily $G = (C_3 \times A_5) \times_{\lambda} C_2$ being $\alpha(G) = 3$, impossible. Thus we can suppose $L_1 < C_G(L_2)$ and $G/S(G) \neq C_2$. By considering the different orders of elements in $S(G) = C_p' \times A_s$, it follows that $r_G(S(G)) \ge 8$ and $\alpha(G) \le 5$. Moreover, if $x \in C_G(L_2) - S(G)$, then every element of A_5 is centralized by x, so xS(G) has elements of, at least, three different orders, hence $r_G(xS(G)) \ge 3$ and consequently $r(G/S(G)) \le 4$ (otherwise, $\alpha(G) = r_G(xS(G)) + \sum_{i=1}^{s} r_G(x_iS(G))$ with $s \ge 3$ implies $\alpha(G) \ge 3 + 1 + 1 + 1 = 6$, impossible). If r(G/S(G)) = 4, then there exists $y \in G - S(G)$ such that

 $r_G(yS(G)) = 1$, hence $|C_G(y)| \in \{2,3,4,5\}$ and necessarily S(G) is solvable, impossible. If $G/S(G) = \langle \bar{x} \rangle \approx C_3$, then $\alpha(G) = 2 \cdot r_G(xS(G)) \ge 6$, impossible. Finally, if $G/S(G) = \langle \bar{a} \rangle \times_f \langle \bar{b} \rangle \approx \Sigma_3$, then $C_G(L_2) = S(G) \langle a \rangle$ and $r_G(bS(G)) \le 2$, hence $|C_G(b)| = 2$ or 4 and S(G) is solvable. Thus $\beta(G) = 1$ and $r(G) \le 12$. Set $S(G) = A \times \cdots \times A$, with A a non-abelian simple group. As $\alpha(G) \ge 5$, we have $r_G(S(G)) \le 7$, hence $|\{o(g)|g \in S(G)\}| \le 7$ and this implies that $e \le 2$. If e = 2 and $p_1 \ne p_2$ are two odd prime numbers, divisors of |A|, then S(G) has elements of order 1, 2, p_1 , p_2 , $2p_1$, $2p_2$, p_1p_2 , hence $r_G(S(G)) = 7$ and $\alpha(G) = 5$. Moreover, necessarily $|\{o(g)|g \in A^*\}| = 3$, so $A \approx A_5$. We have $C_G(S(G)) = 1$, because $\beta(G) = 1$ and also

$$S(G) \triangleleft G \leq \operatorname{Aut}(S(G)) = \operatorname{Aut}(A_5) \sim \Sigma_2 = \Sigma_5 \sim \Sigma_2 = (\Sigma_5 \times \Sigma_5) \times_{\lambda} C_2$$

being Aut $(A_5 \times A_5) \simeq C_2 \sim C_2 = D_8$. If $G/A_5^2 \simeq C_2$, then r(G) = 2s + (25 - s)/2 and 2 divides $|A_5|^2$, so $s \ge 2$, but $s = 1 \pmod{2}$, hence $s \ge 3$ and $r(G) \ge 6 + 11 = 17$, that is impossible. If |G/S(G)| = 4 or |G/S(G)| = 4 or |G/S(G)| = 4 and |G/S(G)| = 4 and |G/S(G)| = 4 and |G/S(G)| = 4 is a non-abelian simple group, |G/S(G)| = 4. In an |G/S(G)| = 4 and |G/S(G)| = 4. Further, |G/S(G)| = 4 and |G/S(G)| = 4. Further, |G/S(G)| = 4 and |G/S(G)| = 4.

If $\alpha(G) \ge 7$, then $r_G(S(G)) \le 5$, hence $|\{o(g) \mid g \in A\}| \le 5$ and necessarily $A \in \{A_5, PSL(2,7), A_6, SL(2,8)\}$. We have $Aut(A_5) = \Sigma_5$, $Aut(A_6) = P\Gamma L(2,9)$, Aut(PSL(2,7)) = PGL(2,7) and $Aut(SL(2,8)) = P\Gamma L(2,8)$, and the possible groups that appear here satisfy either r(G) > 12 or $\alpha(G) < 7$. Therefore $\alpha(G) \in \{5,6\}$ and consequently $r(G/S(G)) \le 7$.

If $r(G/S(G)) = 7 = \alpha(G) + 1$, then $|C_G(x)| = |C_{\bar{G}}(\bar{x})|$ for each $x \in G - S(G)$ and Lemma 2.3 of [25] yields that S(G) is abelian, impossible.

If r(G/S(G)) = 5 or 6, then, at least, there are $x, y \in G - S(G)$ such that $r_G(xS(G)) = 1 = r_G(yS(G))$ and \bar{x} does not conjugate with \bar{y} in \bar{G} . Now, from an inspection of the tuples $\Delta_{\bar{G}}$ of the groups with 5 or 6 conjugate classes, we deduce from Lemma 2.13 of [25] that S(G) is solvable, which is impossible. Thus we can suppose that G/S(G) is isomorphic to one of the following groups: C_2 , C_3 , C_3 , C_4 , $C_2 \times C_2$, D_{10} and A_4 .

If $G/S(G) \simeq A_4$, we have $\alpha(G) = r_G(aS(G)) + r_G(bS(G)) + r_G(b^{-1}S(G)) \le 6$ with $o(\bar{a}) = 2$ and $o(\bar{b}) = 3$, hence $r_G(bS(G)) \le 2$, so $|C_G(b)| = 3$ or 6 and S(G) is solvable by Lemma 2.13 (cf. [25]). Similarly, the case $\bar{G} \simeq D_{10}$ cannot arise here.

Suppose $|\bar{G}| = 4$, then there exists $b \in G - S(G)$ such that $r_G(bS(G)) = 2$, hence $\Delta_b = (8, 8)$ and G has sectional rank at most 4. Now [8] and Lemmas 1.5 and 1.6 imply that there is not any group in this case.

Table 10

C ₁ $C_0 \times (H \times_1 C_2)$ $C_1 \times (H \times_2 C_3) = C_2 \times (H \times_3 (b))$ with $h^b = h^{-1} \ \forall h \in H$ $r = 15 + 5 \ H $ $r = 15 + 5 $	G/S(G)	G	r(G)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\overline{C_2}$	$C_{10} \times (H \times_f C_2)$	1 1
$ \sum_{S} (C_{2} \times C_{3} \times S_{3}) = C_{2} \times ((x_{1}, y_{1}, x_{2}, y_{2}) \times_{A} (a, b)) $ $ \text{with } x_{1}^{n} = y_{n}, y_{1}^{n} = x_{1}, y_{1} \times_{2}, y_{2} \times_{A} (a, b)) $ $ \text{with } x_{1}^{n} = y_{n}, y_{1}^{n} = x_{1}, y_{1} \times_{2}, y_{2} \times_{A} (a) \times_{A} (b)) \text{ with } $ $ x_{1}^{n} = y_{1}, y_{1}^{n} = x_{1}, y_{1} \times_{2}, y_{1} \times_{A}^{n} = x_{1}, i = 1, 2 $ $ C_{2}^{n} \times_{A} (C_{2} \times C_{1}) = (x_{1}, x_{2}) \times_{A} ((a) \times_{A} (b)) \text{ with } $ $ x_{1}^{n} = x_{2}, x_{2}^{n} = x_{1}^{n} \times_{1}^{n}, x_{1}^{n} = x_{1}, x_{1}^{n} = x_{1}^{n} \times_{1}^{n} = x_{1}^{n} \times_{1}^{$			
with $x_i^n = y_i$, $y_i^n = x_i$, $y = y_i$, $x_i^h = x_i$, $i = 1, 2$ $C_i^2 \times DC_i = (x_1, y_1, x_2, y_2) \times_i ((a) \times_i (b))$ with $x_i^n = y_i$, $y_i^n = x_i$, $y_i = y_i^h$, $x_i^h = x_i$, $i = 1, 2$ $C_i^2 \times_i (C_i \times_i C_i) = (x_1, x_2) \times_i ((a) \times_i (b))$ with $x_i^n = x_i$, $x_i^n = x_i^n = x$	C_3		
$C_{1}^{2} \times_{A} DC_{3} = (x_{1}, y_{1}, x_{2}, y_{2}) \times_{A} ((a) \times_{A} (b)) \text{ with } x_{1}^{2} = y_{1}, y_{1}^{2} = x_{1}^{2} = x_{1}, i = 1, 2$ $C_{1}^{2} \times_{A} (C_{2} \times_{C_{2}}) = (x_{1}, x_{2}) \times_{A} ((a) \times_{A} (b)) \text{ with } x_{1}^{2} = x_{2}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, (x_{2} \times_{C_{2}}) = (x_{1}, x_{2}) \times_{A} ((a) \times_{A} (b)) \text{ with } x_{1}^{2} = x_{2}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, (x_{2} \times_{C_{2}}) = (x_{1}, x_{2}) \times_{A} ((a) \times_{A} (b)) \text{ with } x_{1}^{2} = x_{1}^{2} \times_{A} (x_{2} \times_{A} ($	Σ_3		$r=20, \ \beta(G)=4$
$C_{2}^{2} \times_{\Lambda} (C_{N} \times_{\Gamma} C_{2}) = (x_{1}, x_{2}) \times_{\Lambda} ((a) \times_{\Gamma} (b)) \text{ with } x_{1}^{2} = x_{1}, x_{2}^{2} = x_{1}^{2} x_{1}^{2}, x_{1}^{2} = x_{1}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{1}^{2} = x_{1}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{1}^{2} = x_{1}^{2}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{1}^{2} = x_{2}^{2}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{1}^{2} \times_{\Lambda} (a) \times_{\Gamma} (b)) \text{ with } x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{1}^{2} \times_{\Lambda} (a) \times_{\Gamma} (b)) \text{ with } x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{2}^{2} \times_{\Lambda} (a) \times_{\Gamma} (b)) \text{ with } x_{2}^{2} = x_{1}^{2} x_{2}^{2}, x_{2}^{2} \times_{\Lambda} (a) \times_{\Gamma} (b)) \text{ with } x_{2}^{2} = x_{2}^{2}, x_{2}^{2} \times_{\Lambda} (a) \times_{\Gamma} (b)) \text{ with } x_{2}^{2} = x_{2}^{2}, x_{2}^{2} \times_{\Lambda} (a) \times_{\Gamma} (b)) \text{ with } x_{2}^{2} = x_{2}^{2}, x_{2}^{2} \times_{\Lambda} (a) \times_{\Gamma} (a) \times_{\Gamma} (b)) \text{ with } x_{3}^{2} = x_{2}^{2}, x_{3}^{2} = x_{3}^{2} \times_{\Gamma} (a) \times_{\Gamma} (a) \times_{\Gamma} (a) \times_{\Gamma} (a) \times_{\Gamma} (a) \times_{\Gamma} (a) \times_{\Gamma} (b)) \text{ with } x_{3}^{2} = x_{2}^{2}, x_{3}^{2} = x_{3}^{2} \times_{\Gamma} (a) \times_$		$C_2^4 \times_{\lambda} DC_3 = \langle x_1, y_1, x_2, y_2 \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)$ with	$r=20, \ \beta(G)=4$
$C_{2}^{2} \wedge_{\lambda} (C_{2}^{2} \times_{\zeta} C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} ((a_{1}, a_{2} \times_{\zeta} f_{2})) \text{ with } x_{1}^{p} = x_{1}, x_{1}^{p} = x_{2}, x_{2}^{p} = x_{1}^{p} x_{2}^{p}, x_{1}^{p} = x_{1}, x_{2}^{p} = x_{1}^{p} x_{2}^{p}, x_{2}^{p} = x_{1}^{p} x_{2}^{p} = x$		$C_7^2 \times_{\lambda} (C_9 \times_f C_2) = \langle x_1, x_2 \rangle \times_{\lambda} (\langle a \rangle \times_f \langle b \rangle)$ with	$r=39, \ \beta(G)=2$
$C_{3}^{3} \times_{\lambda} \Sigma_{3} = \langle x_{1}, x_{2}, x_{3} \rangle \times_{\lambda} \langle (a) \times_{f} \langle b \rangle) \text{ with } x_{1}^{a} = x_{1}, x_{2}^{a} = x_{3}, x_{3}^{a} = x_{2}^{2} x_{3}^{a}, x_{1}^{b} = x_{1}^{a}, x_{2}^{b} = x_{2}^{b} x_{3}^{a} = x_{2}^{1} x_{3}^{a}$ $C_{2} \times (C_{2}^{2} \times_{\lambda} (C_{0} \times_{f} C_{2})) = C_{2} \times (\langle (x, y) \times_{\lambda} (\langle a) \times_{f} \langle b \rangle) $ with $x^{a} = y, y^{a} = xy, x^{b} = x, y^{b} = xy$ $C_{2} \times (C_{2}^{2} \times_{\lambda} (C_{3}^{2} \times_{f} C_{2})) = C_{2} \times (\langle (x, y) \times_{\lambda} (\langle a_{1}, a_{2} \rangle \times_{f} \langle b \rangle)) $ $x = 18, \beta(G) = 3$ with $x^{a} = x, y^{a} = y, x^{a} = y, y^{a} = xy, x^{b} = xy$ $(C_{3} \times C_{0}) \times_{f} C_{2} $ $x = 15, \beta(G) = 4$ $C_{4} \qquad (C_{1} \times H) \times_{\lambda} C_{4} = (\langle (x) \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $x = 18 + 15 \cdot (H - 1)/4$ $x = 18 + 15 \cdot (H - 1)/4$ $x = 18 + 15 \cdot (H - 1)/4$ $x = 18 + 16 \cdot 10(H - 1)$ $x = 16 + 10(H - 1)/4$		$C_7^2 \times_{\lambda} (C_3^2 \times_f C_2) = \langle x_1, x_2 \rangle \times_{\lambda} (\langle a_1, a_2 \rangle \times_f \langle b \rangle)$ with	$r=39, \ \beta(G)=2$
$C_{2} \times (C_{2}^{2} \times_{A} (C_{0} \times_{C} C_{2})) = C_{2} \times ((x, y) \times_{A} ((a) \times_{f} (b))) \qquad r = 18, \ \beta(G) = 3$ with $x^{a} = y, \ y^{a} = xy, \ x^{b} = x, \ y^{b} = xy$ $C_{2} \times (C_{2}^{2} \times_{A} (C_{3}^{2} \times_{C} C_{2})) = C_{2} \times ((x, y) \times_{A} ((a_{1}, a_{2}) \times_{f} (b))) \qquad r = 18, \ \beta(G) = 3$ with $x^{a_{1}} = x, \ y^{a_{1}} = y, \ x^{a_{2}} = y, \ y^{a_{2}} = xy, \ x^{b} = x, \ y^{b} = xy$ $(C_{3} \times C_{9}) \times_{f} C_{2} \qquad r = 15, \ \beta(G) = 4$ $C_{4} \qquad (C_{15} \times H) \times_{A} C_{4} = ((x) \times H) \times_{A} (a) \text{ with } x^{a} = x^{-1} \qquad r = 18 + 15 \cdot (H - 1)/4$ and $H(a) = H \times_{f} (a)$ $C_{2} \times (C_{5} \times H) \times_{A} C_{4} = C_{2} \times ((x) \times H) \times_{A} (a) \text{ with } x^{a} = x^{-1} \qquad r = 16 + 10(H - 1)/4$ $C_{1} \times_{G} \times$		$C_5^3 \times_{\lambda} \Sigma_3 = \langle x_1, x_2, x_3 \rangle \times_{\lambda} (\langle a \rangle \times_f \langle b \rangle)$ with	$r=35, \beta(G)=2$
$C_{2} \times (C_{2}^{2} \times_{\lambda} (C_{3}^{2} \times_{f} C_{2})) = C_{2} \times (\langle x, y \rangle \times_{\lambda} (\langle a_{1}, a_{2} \rangle \times_{f} (b))) $ with $x^{a_{1}} = x, y^{a_{1}} = y, x^{a_{2}} = y, y^{a_{2}} = xy, x^{b} = x, y^{b} = xy$ $(C_{3} \times C_{9}) \times_{f} C_{2} $ $r = 15, \beta(G) = 4$ $C_{4} \qquad (C_{15} \times H) \times_{\lambda} C_{4} = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $r = 18 + 15 \cdot (H - 1)/4$ and $H(a) = H \times_{f} \langle a \rangle$ $C_{2} \times (C_{5} \times H) \times_{\lambda} C_{6} = C_{2} \times (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $r = 16 + 10(H - 1)$ and $H(a) = H \times_{f} \langle a \rangle$ $(C_{5} \times H) \times_{\lambda} C_{6} = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $r = 16 + 10(H - 1)/4$ $C_{H}(a^{2}) = 1 \text{ and } h^{a^{2}} = h \forall h \in H$ $C_{2} \qquad C_{2} \times (C_{3} \times_{\lambda} D_{6}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{6}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{6}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{6}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{1} \times_{\lambda} C_{3} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1}$ $C_{1} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1}$ $C_{1} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1}, x^{b} = x$ $C_{3} \times_{\lambda} (C_{4} \times_{\lambda} C_{2}) \times_{\lambda} C_{2} = (\langle x \rangle_{\lambda} \langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle$ $r = 18, \beta(G) = 4$ with $a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\lambda} (C_{4} \times_{\lambda} C_{2}) \times_{\lambda} C_{2} = (\langle x \rangle_{\lambda} \langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle$ $r = 18, \beta(G) = 4$ $r = 18, \beta(G) = 3$ $r = 24, \beta(G) = 2$ $r = 28, \beta(G) = 2$ $r = 30, \beta(G) $		$C_2 \times (C_2^2 \times_{\Lambda} (C_9 \times_f C_2)) = C_2 \times (\langle x, y \rangle \times_{\Lambda} (\langle a \rangle \times_f \langle b \rangle))$	$r=18,\ \beta(G)=3$
$(C_{3} \times C_{9}) \times_{f} C_{2} $ $(C_{15} \times H) \times_{\lambda} C_{4} = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $r = 18 + 15 \cdot (H - 1)/4$ $and H(a) = H \times_{f} \langle a \rangle $ $C_{2} \times (C_{5} \times H) \times_{\lambda} C_{4} = C_{2} \times (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $r = 16 + 10(H - 1)$ $and H(a) = H \times_{f} \langle a \rangle $ $(C_{5} \times H) \times_{\lambda} C_{8} = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^{a} = x^{-1} $ $r = 16 + 10(H - 1)/4$ $C_{H}(a^{2}) = 1 \text{ and } h^{a^{4}} = h \forall h \in H$ C_{2}^{2} $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x^{-1}, x^{b} = x r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} \times_{\lambda} C_{\lambda} \times_{\lambda} C_{\lambda} \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle $ $r = 18, \beta(G) = 4$ $r = 18, \beta(G) = 2$ $r = 24, \beta(G) = 3$ $r = 18, \beta(G) = 3$ r		$C_2 \times (C_2^2 \times_{\lambda} (C_3^2 \times_f C_2)) = C_2 \times (\langle x, y \rangle \times_{\lambda} (\langle a_1, a_2 \rangle \times_f \langle b \rangle))$	$r=18,\ \beta(G)=3$
$C_4 \qquad (C_{15} \times H) \times_{\lambda} C_1 = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^a = x^{-1} \qquad r = 18 + 15 \cdot (H - 1)/4$ $\text{and } H(a) = H \times_{f} \langle a \rangle$ $C_2 \times (C_5 \times H) \times_{\lambda} C_4 = C_2 \times (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^a = x^{-1} \qquad r = 16 + 10(H - 1)$ $\text{and } H(a) = H \times_{f} \langle a \rangle$ $(C_5 \times H) \times_{\lambda} C_8 = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with } x^a = x^{-1} \qquad r = 16 + 10(H - 1)/4$ $C_H(a^2) = 1 \text{ and } h^{a^4} = h \forall h \in H$ C_2 $C_2 \times (C_3 \times_{\lambda} D_8) = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^a = x^{-1}, x^b = x r = 18, \beta(G) = 4$ $C_2 \times (C_3 \times_{\lambda} D_8) = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^a = x, x^b = x^{-1} r = 18, \beta(G) = 4$ $C_2 \times (C_3 \times_{\lambda} D_8) = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^a = x, x^b = x^{-1} r = 18, \beta(G) = 4$ $C_1 \times_{\lambda} C_4 = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^b = a^{-1} \qquad r = 18, \beta(G) = 4$ $C_1 \times_{\lambda} C_4 = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^b = a^{-1} \qquad r = 18, \beta(G) = 4$ $C_1 \times_{\lambda} C_4 = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^b = a^{-1} \qquad r = 18, \beta(G) = 4$ $\text{with } a^b = a^{-1}, x^a = x^{-1}, x^b = x$ $(C_3 \times_{\lambda} C_4 \times_{\lambda} C_2) \times_{\lambda} C_2 = (\langle x \rangle \times_{\lambda} \langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle \qquad r = 18, \beta(G) = 4$ $\text{with } a^b = a^{-1}, x^a = x^{-1}, x^b = x$ $C_1 \times_{\lambda} ((C_4 \times_{\lambda} C_2) \times_{\lambda} C_2 = (\langle x \rangle \times_{\lambda} \langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle \qquad r = 18, \beta(G) = 4$ $\text{with } a^b = a^{-1}, x^a = x^{-1}, x^b = x$ $C_2 \times_{\lambda} ((C_4 \times_{\lambda} C_2) \times_{\lambda} C_2) = \langle x \rangle_{\lambda} ((\langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle \qquad r = 18, \beta(G) = 4$ $\text{with } a^b = a^{-1}, x^a = x^{-1}, x^b = x$ $C_1 \times_{\lambda} ((C_4 \times_{\lambda} C_2) \times_{\lambda} C_2) = \langle x \rangle_{\lambda} ((\langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle \qquad r = 18, \beta(G) = 2$ $C_2 \times_{\lambda} C_3 $			$r=15, \ \beta(G)=4$
and $H(a) = H \times_{f}(a)$ $C_{2} \times (C_{3} \times H) \times_{\lambda} C_{4} = C_{2} \times (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle$ with $x^{a} = x^{-1}$ $r = 16 + 10(H - 1)$ and $H(a) = H \times_{f}(a)$ $(C_{5} \times H) \times_{\lambda} C_{8} = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle$ with $x^{a} = x^{-1}$ $r = 16 + 10(H - 1)/4$ $C_{H}(a^{2}) = 1$ and $h^{a^{4}} = h \ \forall h \in H$ $C_{2}^{2} \qquad C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x^{-1}, x^{b} = x \ r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} \ r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)) \text{ with } x^{a} = x, x^{b} = x^{-1} \ r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1} \ r = 18, \beta(G) = 4$ with $a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\lambda} (C_{4} \times_{\lambda} C_{4}) = \langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle$ $r = 18, \beta(G) = 4$ with $a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\lambda} (\langle C_{4} \times C_{2} \rangle \times_{\lambda} C_{2}) = \langle (x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle$ $r = 18, \beta(G) = 4$ with $a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\lambda} (\langle C_{4} \times C_{2} \rangle \times_{\lambda} C_{2}) = \langle x \rangle \times_{\lambda} (\langle (a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle)$ $r = 18, \beta(G) = 4$ with $a^{c} = ab, b^{c} = b, x^{a} = x^{-1}, x^{c} = x, x^{b} = x$ $D_{20} \times \Sigma_{3}$ $r = 24, \beta(G) = 2$ $r = 28, \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{2}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{2}} = x_{3}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{2}} =$	Cı		$r = 18 + 15 \cdot (H - 1)/4$
and $H(a) = H \times_1 \langle a \rangle$ $(C_5 \times H) \times_{\lambda} C_8 = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle$ with $x^a = x^{-1}$ $C_1 \times C_2 \times C_1 \times_{\lambda} D_8 = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle))$ with $x^a = x^{-1}$, $x^b = x$ $r = 18$, $\beta(G) = 4$ $C_2 \times (C_3 \times_{\lambda} D_8) = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle))$ with $x^a = x$, $x^b = x^{-1}$ $r = 18$, $\beta(G) = 4$ $C_2 \times (C_3 \times_{\lambda} D_8) = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle))$ with $x^a = x$, $x^b = x^{-1}$ $r = 18$, $\beta(G) = 4$ $C_2 \times (C_3 \times_{\lambda} Q_8) = C_2 \times (\langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle))$ with $x^a = x$, $x^b = x^{-1}$ $r = 18$, $\beta(G) = 4$ $C_1 \times_{\lambda} C_4 = \langle a \rangle \times_{\lambda} \langle b \rangle$ with $a^b = a^{-1}$ $r = 18$, $\beta(G) = 4$ with $a^b = a^{-1}$, $a^a = x^{-1}$, $a^b = x$ $(C_3 \times_{\lambda} (C_4 \times_{\lambda} C_4) = \langle x \rangle \times_{\lambda} \langle (a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle$ $r = 18$, $\beta(G) = 4$ with $a^b = a^{-1}$, $a^a = x^{-1}$, $a^b = x$ $C_3 \times_{\lambda} ((C_4 \times_{\lambda} C_2) \times_{\lambda} C_2) = \langle x \rangle \times_{\lambda} (((a \rangle \times_{\lambda} \langle b \rangle)) \times_{\lambda} \langle c \rangle)$ $r = 18$, $\beta(G) = 4$ with $a^b = a^{-1}$, $a^a = x^{-1}$, $a^b = x$ $C_3 \times_{\lambda} ((C_4 \times_{\lambda} C_2) \times_{\lambda} C_2) = \langle x \rangle \times_{\lambda} (((a \rangle \times_{\lambda} \langle b \rangle)) \times_{\lambda} \langle c \rangle)$ $r = 18$, $\beta(G) = 4$ with $a^c = ab$, $b^c = b$, $a^c = x^{-1}$, $a^c = x$, $a^b = x$ $c_1 \times_{\lambda} (c_1 \times_{\lambda} C_2) \times_{\lambda} (c_2 \times_{\lambda} C_2) = \langle x \rangle_{\lambda} ((a \times_{\lambda} \langle a \rangle) \times_{\lambda} \langle c \rangle)$ $r = 18$, $\beta(G) = 2$ $c_2 \times D_{10}$ $r = 24$, $\beta(G) = 2$ $c_1 \times_{\lambda} (c_1 \times_{\lambda} C_2) \times_{\lambda} (c_2 \times_{\lambda} (c_1 \times_{\lambda} \times_{\lambda} (c_2 \times_{\lambda} c_2)) \times_{\lambda} (a_1, a_2)$ with $a^c = ab$, $a^c = a^c \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_2 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_1 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_2 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_2 \times C_3 \times C_1 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_2 \times C_3 \times C_3 \times C_3 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_1 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_2 \times C_3 \times C_3 \times C_3 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_2 \times C_3 \times C_3 \times C_3 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_{\lambda} (c_1 \times_{\lambda} c_2)$ $c_2 \times c_3 \times c_3 \times_{\lambda} (c_1 \times_{\lambda} c_2) \times_$.	and $H(a) = H \times_f \langle a \rangle$	
$C_{H}(a^{2}) = 1 \text{ and } h^{a^{4}} = h \forall h \in H$ $C_{2}^{2} \qquad C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times ((x) \times_{\lambda} ((a) \times_{\lambda} (b))) \text{ with } x^{a} = x^{-1}, x^{b} = x r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} D_{8}) = C_{2} \times ((x) \times_{\lambda} ((a) \times_{\lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\lambda} Q_{8}) = C_{2} \times ((x) \times_{\lambda} ((a) \times_{\lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^{b} = a^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\lambda} C_{4} \times (C_{2}) \times_{\lambda} C_{2} = ((x) \times_{\lambda} (a) \times_{\lambda} (b)) r = 18, \beta(G) = 4$ $\text{with } a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $(C_{3} \times C_{4} \times C_{2}) \times_{\lambda} C_{2} = ((x) \times_{\lambda} (a) \times_{\lambda} (b)) \times_{\lambda} \langle c \rangle r = 18, \beta(G) = 4$ $\text{with } a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\lambda} ((C_{4} \times C_{2}) \times_{\lambda} C_{2}) = (x) \times_{\lambda} (((a) \times_{\lambda} (b)) \times_{\lambda} \langle c \rangle) r = 18, \beta(G) = 4$ $\text{with } a^{c} = ab, b^{c} = b, x^{a} = x^{-1}, x^{c} = x, x^{b} = x$ $D_{20} \times \Sigma_{3} r = 24, \beta(G) = 2$ $C_{13} \times_{12} \times_{13} \times_{$		and $H(a) = H \times_f \langle a \rangle$	
$C_{2} \times (C_{3} \times_{\Lambda} D_{8}) = C_{2} \times ((x) \times_{\Lambda} ((a) \times_{\Lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \ \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\Lambda} Q_{8}) = C_{2} \times ((x) \times_{\Lambda} ((a) \times_{\Lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \ \beta(G) = 4$ $C_{12} \times_{\Lambda} C_{4} = (a) \times_{\Lambda} (b) \text{ with } a^{b} = a^{-1} \qquad r = 18, \ \beta(G) = 4$ $C_{3} \times_{\Lambda} (C_{4} \times_{\Lambda} C_{4}) = (x) \times_{\Lambda} ((a) \times_{\Lambda} (b)) \qquad r = 18, \ \beta(G) = 4$ $\text{with } a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $(C_{3} \times C_{4} \times C_{2}) \times_{\Lambda} C_{2} = ((x) \times (a) \times (b)) \times_{\Lambda} (c) \qquad r = 18, \ \beta(G) = 4$ $\text{with } a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\Lambda} ((C_{4} \times C_{2}) \times_{\Lambda} C_{2}) = (x) \times_{\Lambda} (((a) \times (b)) \times_{\Lambda} (c)) \qquad r = 18, \ \beta(G) = 4$ $\text{with } a^{c} = ab, b^{c} = b, x^{a} = x^{-1}, x^{c} = x, x^{b} = x$ $D_{26} \times \Sigma_{3} \qquad r = 24, \ \beta(G) = 2$ $C_{3} \times C_{11} \times C_{3} \times_{\Lambda} C_{2}^{2} = ((x_{1}) \times (x_{2}) \times (x_{3})) \times_{\Lambda} (a_{1}, a_{2}) \text{ with } \qquad r = 39, \ \beta(G) = 2$ $(C_{3} \times C_{11} \times C_{3}) \times_{\Lambda} C_{2}^{2} = ((x_{1}) \times (x_{2}) \times (x_{3})) \times_{\Lambda} (a_{1}, a_{2}) \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3} \times C_{3}) \times_{\Lambda} C_{2}^{2} = ((x_{1}, x_{2}, x_{3}) \times (x_{4})) \times_{\Lambda} (a_{1}, a_{2}) \text{ with } \qquad r = 48, \ \beta(G) = 6$ $\text{with } x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}$ $C_{3} \times_{\Lambda} (C_{4} \times C_{2}) = (x_{1}, x_{2}) \times_{\Lambda} ((a_{1}) \times (a_{2})) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}$ $C_{3} \times_{\Lambda} (C_{4} \times C_{2}) = (x_{1}, x_{2}) \times_{\Lambda} ((a_{1}) \times (a_{2})) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$		$(C_5 \times H) \times_{\lambda} C_8 = (\langle x \rangle \times H) \times_{\lambda} \langle a \rangle$ with $x^a = x^{-1}$ $C_H(a^2) = 1$ and $h^{a^4} = h \ \forall h \in H$	r = 16 + 10(H - 1)/4
$C_{2} \times (C_{3} \times_{\Lambda} D_{8}) = C_{2} \times ((x) \times_{\Lambda} ((a) \times_{\Lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \ \beta(G) = 4$ $C_{2} \times (C_{3} \times_{\Lambda} Q_{8}) = C_{2} \times ((x) \times_{\Lambda} ((a) \times_{\Lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \ \beta(G) = 4$ $C_{12} \times_{\Lambda} C_{4} = (a) \times_{\Lambda} (b) \text{ with } a^{b} = a^{-1} \qquad r = 18, \ \beta(G) = 4$ $C_{3} \times_{\Lambda} (C_{4} \times_{\Lambda} C_{4}) = (x) \times_{\Lambda} ((a) \times_{\Lambda} (b)) \qquad r = 18, \ \beta(G) = 4$ $\text{with } a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $(C_{3} \times C_{4} \times C_{2}) \times_{\Lambda} C_{2} = ((x) \times (a) \times (b)) \times_{\Lambda} (c) \qquad r = 18, \ \beta(G) = 4$ $\text{with } a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\Lambda} ((C_{4} \times C_{2}) \times_{\Lambda} C_{2}) = (x) \times_{\Lambda} (((a) \times (b)) \times_{\Lambda} (c)) \qquad r = 18, \ \beta(G) = 4$ $\text{with } a^{c} = ab, b^{c} = b, x^{a} = x^{-1}, x^{c} = x, x^{b} = x$ $D_{26} \times \Sigma_{3} \qquad r = 24, \ \beta(G) = 2$ $C_{3} \times C_{11} \times C_{3} \times_{\Lambda} C_{2}^{2} = ((x_{1}) \times (x_{2}) \times (x_{3})) \times_{\Lambda} (a_{1}, a_{2}) \text{ with } \qquad r = 39, \ \beta(G) = 2$ $(C_{3} \times C_{11} \times C_{3}) \times_{\Lambda} C_{2}^{2} = ((x_{1}) \times (x_{2}) \times (x_{3})) \times_{\Lambda} (a_{1}, a_{2}) \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3} \times C_{3}) \times_{\Lambda} C_{2}^{2} = ((x_{1}, x_{2}, x_{3}) \times (x_{4})) \times_{\Lambda} (a_{1}, a_{2}) \text{ with } \qquad r = 48, \ \beta(G) = 6$ $\text{with } x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}$ $C_{3} \times_{\Lambda} (C_{4} \times C_{2}) = (x_{1}, x_{2}) \times_{\Lambda} ((a_{1}) \times (a_{2})) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}$ $C_{3} \times_{\Lambda} (C_{4} \times C_{2}) = (x_{1}, x_{2}) \times_{\Lambda} ((a_{1}) \times (a_{2})) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$	C ²	$C \vee (C \vee D) - C \vee ((v) \vee ((a) \vee (b)))$ with $v^a = v^{-1} \cdot v^b = v$	r=18 $R(G)=4$
$C_{2} \times (C_{3} \times_{\Lambda} Q_{8}) = C_{2} \times ((x) \times_{\Lambda} ((a) \times_{\Lambda} (b))) \text{ with } x^{a} = x, x^{b} = x^{-1} r = 18, \beta(G) = 4$ $C_{12} \times_{\Lambda} C_{4} = \langle a \rangle \times_{\Lambda} \langle b \rangle \text{ with } a^{b} = a^{-1} \qquad r = 18, \beta(G) = 4$ $C_{3} \times_{\Lambda} (C_{4} \times_{\Lambda} C_{4}) = \langle x \rangle \times_{\Lambda} ((a) \times_{\Lambda} \langle b \rangle) \qquad r = 18, \beta(G) = 4$ with $a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $(C_{3} \times C_{4} \times C_{2}) \times_{\Lambda} C_{2} = (\langle x \rangle \times \langle a \rangle \times \langle b \rangle) \times_{\Lambda} \langle c \rangle \qquad r = 18, \beta(G) = 4$ with $a^{b} = a^{-1}, x^{a} = x^{-1}, x^{b} = x$ $C_{3} \times_{\Lambda} ((C_{4} \times C_{2}) \times_{\Lambda} C_{2}) = \langle x \rangle \times_{\Lambda} (((a) \times \langle b \rangle) \times_{\Lambda} \langle c \rangle) \qquad r = 18, \beta(G) = 4$ with $a^{c} = ab, b^{c} = b, x^{a} = x^{-1}, x^{c} = x, x^{b} = x$ $D_{26} \times \Sigma_{3} \qquad r = 24, \beta(G) = 2$ $D_{22} \times D_{10} \qquad r = 30, \beta(G) = 2$ $(C_{3}^{2} \times_{\Gamma} C_{2}) \times D_{14} \qquad r = 30, \beta(G) = 2$ $(C_{3}^{3} \times_{C_{1}}) \times_{\Lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\Lambda} \langle a_{1}, a_{2} \rangle \text{ with} \qquad r = 39, \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times_{C_{3}}) \times_{\Lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\Lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}^{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{1}} = x_{4}^{-1}, x_{4}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}^{-1} = x_{4}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}^{-1}, x_{3}^{a_{2}} = x_{1}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{2}} = x_{4}^{-1}, x_{4}^{a_{1}} = x_{1}^{-1}, x_{4}^{a_{1}} = x_{1}^{-1}, x_{4}^{a_{1}} = x_{1}^{-1}, x_{4}^{a_{2}} = x_{1}^{-1}, x_{4}^{a_{1}} = x_{1}^{-1$	C ₂	$C_2 \times (C_3 \times_A D_8) = C_2 \times ((x/x) \times_A ((u/x/b))) \text{ with } x^a = x, x^b = x^{-1}$ $C_3 \times (C_3 \times_A D_8) = C_2 \times ((x/x) \times_A ((u/x/b))) \text{ with } x^a = x, x^b = x^{-1}$	$r = 18, \beta(G) = 4$
$C_{12} \times_{\lambda} C_4 = \langle a \rangle \times_{\lambda} \langle b \rangle \text{ with } a^b = a^{-1} $ $C_{3} \times_{\lambda} (C_4 \times_{\lambda} C_4) = \langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle) $ $\text{with } a^b = a^{-1}, x^a = x^{-1}, x^b = x $ $(C_3 \times C_4 \times C_2) \times_{\lambda} C_2 = (\langle x \rangle \times \langle a \rangle \times \langle b \rangle) \times_{\lambda} \langle c \rangle $ $\text{with } a^b = a^{-1}, x^a = x^{-1}, x^b = x $ $C_3 \times_{\lambda} ((C_4 \times C_2) \times_{\lambda} C_2) = \langle x \rangle \times_{\lambda} ((\langle a \rangle \times \langle b \rangle) \times_{\lambda} \langle c \rangle) $ $\text{with } a^c = ab, b^c = b, x^a = x^{-1}, x^c = x, x^b = x $ $D_{26} \times \Sigma_3 $ $D_{22} \times D_{10} $ $(C_3^2 \times_f C_2) \times D_{14} $ $(C_3 \times C_{11} \times C_3) \times_{\lambda} C_2^2 = (\langle x_1 \rangle \times \langle x_2 \rangle \times \langle x_3 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with } $ $x_1^{a_1} = x_1, x_2^{a_1} = x_2^{-1}, x_3^{a_1} = x_3^{-1}, x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3^{-1} $ $(C_3^3 \times C_5) \times_{\lambda} C_2^2 = (\langle x_1, x_2, x_3 \rangle \times \langle x_4 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with } $ $x_1^{a_1} = x_1, x_2^{a_1} = x_2^{-1}, x_3^{a_1} = x_3^{-1}, x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3^{-1} $ $(C_3^3 \times C_5) \times_{\lambda} C_2^2 = (\langle x_1, x_2, x_3 \rangle \times \langle x_4 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with } $ $x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3, x_4^{a_2} = x_4 $ $C_3^2 \times_{\lambda} (C_4 \times C_2) = \langle x_1, x_2 \rangle \times_{\lambda} (\langle a_1 \rangle \times \langle a_2 \rangle) \text{ with } $ $x_1^{a_1} = x_1^{-1}, x_2^{a_1} = x_2^{-1}, x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2^{-1} $ $C_2 \times \Sigma_3 \times \Sigma_3 $ $r = 18, \beta(G) = 4$ $r = 18, \beta(G) = 2$ $r = 18, \beta(G) = 3$ $r = 18, \beta(G) = 3$ $r = 18, \beta(G) = 3$		$C_2 \times (C_3 \times_A D_8) = C_2 \times ((x) \times_A ((a) \times_A (b))) \text{ with } x^a = x, x^b = x^{-1}$	$r=18, \beta(G)=4$
$C_{3} \times_{\lambda} (C_{4} \times_{\lambda} C_{4}) = \langle x \rangle \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle) \qquad r = 18, \ \beta(G) = 4$ with $a^{b} = a^{-1}, \ x^{a} = x^{-1}, \ x^{b} = x$ $(C_{3} \times C_{4} \times C_{2}) \times_{\lambda} C_{2} = (\langle x \rangle \times \langle a \rangle \times \langle b \rangle) \times_{\lambda} \langle c \rangle \qquad r = 18, \ \beta(G) = 4$ with $a^{b} = a^{-1}, \ x^{a} = x^{-1}, \ x^{b} = x$ $C_{3} \times_{\lambda} ((C_{4} \times C_{2}) \times_{\lambda} C_{2}) = \langle x \rangle \times_{\lambda} (((a) \times \langle b \rangle) \times_{\lambda} \langle c \rangle) \qquad r = 18, \ \beta(G) = 4$ with $a^{c} = ab, \ b^{c} = b, \ x^{a} = x^{-1}, \ x^{c} = x, \ x^{b} = x$ $D_{2b} \times \Sigma_{3} \qquad r = 24, \ \beta(G) = 2$ $D_{22} \times D_{10} \qquad r = 28, \ \beta(G) = 2$ $(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3}) \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{4}^{a_{1}} = x_{4}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{4}^{-1}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$		$C_2 \times (C_3 \times_{\lambda} Q_8) = C_2 \times ((\alpha/1) \times_{\lambda} ((\alpha/1) \times_{\lambda} (Q_8)))$ with $a^b = a^{-1}$	$r = 18$, $\beta(G) = 4$
$(C_{3} \times C_{4} \times C_{2}) \times_{\lambda} C_{2} = (\langle x \rangle \times \langle a \rangle \times \langle b \rangle) \times_{\lambda} \langle c \rangle \qquad r = 18, \ \beta(G) = 4$ with $a^{b} = a^{-1}, \ x^{a} = x^{-1}, \ x^{b} = x$ $C_{3} \times_{\lambda} ((C_{4} \times C_{2}) \times_{\lambda} C_{2}) = \langle x \rangle \times_{\lambda} (((a) \times \langle b \rangle) \times_{\lambda} \langle c \rangle) \qquad r = 18, \ \beta(G) = 4$ with $a^{c} = ab, \ b^{c} = b, \ x^{a} = x^{-1}, \ x^{c} = x, \ x^{b} = x$ $D_{26} \times \Sigma_{3} \qquad r = 24, \ \beta(G) = 2$ $D_{22} \times D_{10} \qquad r = 28, \ \beta(G) = 2$ $(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_{3} \times C_{11} \times C_{3}) \times_{\lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{4}^{a_{1}} = x_{4}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1} = x_{4}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{2}^$			
with $a^{b} = a^{-1}$, $x^{a} = x^{-1}$, $x^{b} = x$ $C_{3} \times_{\lambda} ((C_{4} \times C_{2}) \times_{\lambda} C_{2}) = \langle x \rangle \times_{\lambda} (((a) \times \langle b \rangle) \times_{\lambda} \langle c \rangle) $ $\text{with } a^{c} = ab, \ b^{c} = b, \ x^{a} = x^{-1}, \ x^{c} = x, \ x^{b} = x$ $D_{26} \times \Sigma_{3} $ $D_{22} \times D_{10} $ $(C_{3}^{2} \times_{1} C_{2}) \times D_{14} $ $(C_{3} \times C_{11} \times C_{3}) \times_{\lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \text{ with } $ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle $ with $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{4}^{a_{1}} = x_{4}^{-1}, $ $x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } $ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } $ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} $ $r = 18, \ \beta(G) = 3$		with $a^b = a^{-1}$, $x^a = x^{-1}$, $x^b = x$	
$C_{3} \times_{\lambda} ((C_{4} \times C_{2}) \times_{\lambda} C_{2}) = \langle x \rangle \times_{\lambda} (((a) \times \langle b \rangle)) \times_{\lambda} \langle c \rangle) \qquad r = 18, \ \beta(G) = 4$ with $a^{c} = ab, \ b^{c} = b, \ x^{a} = x^{-1}, \ x^{c} = x, \ x^{b} = x$ $D_{26} \times \Sigma_{3} \qquad r = 24, \ \beta(G) = 2$ $D_{22} \times D_{10} \qquad r = 28, \ \beta(G) = 2$ $(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_{3} \times C_{11} \times C_{3}) \times_{\lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{4}^{a_{1}} = x_{4}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}, \ x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$		$(C_3 \times C_4 \times C_2) \times_{\lambda} C_2 = (\langle x \rangle \times \langle a \rangle \times \langle b \rangle) \times_{\lambda} \langle c \rangle$	$r=18, \ \beta(G)=4$
with $a' = ab$, $b' = b$, $x^a = x^{-1}$, $x^c = x$, $x^b = x$ $D_{26} \times \Sigma_3$ $D_{22} \times D_{10}$ $(C_3^2 \times_1 C_2) \times D_{14}$ $(C_3 \times C_{11} \times C_3) \times_{\lambda} C_2^2 = (\langle x_1 \rangle \times \langle x_2 \rangle \times \langle x_3 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with }$ $x_1^{a_1} = x_1, x_2^{a_1} = x_2^{-1}, x_3^{a_1} = x_3^{-1}, x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3^{-1}$ $(C_3^3 \times C_5) \times_{\lambda} C_2^2 = (\langle x_1, x_2, x_3 \rangle \times \langle x_4 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with }$ $x_1^{a_1} = x_1, x_2^{a_1} = x_2^{-1}, x_3^{a_1} = x_3^{-1}, x_1^{a_1} = x_4^{-1},$ $x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3, x_4^{a_2} = x_4$ $C_3^2 \times_{\lambda} (C_4 \times C_2) = \langle x_1, x_2 \rangle \times_{\lambda} (\langle a_1 \rangle \times \langle a_2 \rangle) \text{ with }$ $x_1^{a_1} = x_1^{-1}, x_2^{a_1} = x_2^{-1}, x_1^{a_2} = x_1, x_2^{a_2} = x_2^{-1}$ $C_2 \times \Sigma_3 \times \Sigma_3$ $r = 18, \beta(G) = 3$ $r = 18, \beta(G) = 3$			r=18 $R(G)=4$
$D_{26} \times \Sigma_{3} \qquad r = 24, \ \beta(G) = 2$ $D_{22} \times D_{10} \qquad r = 28, \ \beta(G) = 2$ $(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_{3} \times C_{11} \times C_{3}) \times_{\lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{4}^{a_{1}} = x_{4}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}, \ x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$		with $a^c = ab$ $b^c = b$ $x^a = x^{-1}$, $x^c = x$, $x^b = x$	$\gamma = 10, p(0) = 4$
$D_{22} \times D_{10} \qquad r = 28, \ \beta(G) = 2$ $(C_3^2 \times_f C_2) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_3 \times C_{11} \times C_3) \times_{\lambda} C_2^2 = (\langle x_1 \rangle \times \langle x_2 \rangle \times \langle x_3 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_1^{a_1} = x_1, \ x_2^{a_1} = x_2^{-1}, \ x_3^{a_1} = x_3^{-1}, \ x_1^{a_2} = x_1^{-1}, \ x_2^{a_2} = x_2, \ x_3^{a_2} = x_3^{-1}$ $(C_3^3 \times C_5) \times_{\lambda} C_2^2 = (\langle x_1, x_2, x_3 \rangle \times \langle x_4 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_1^{a_1} = x_1, \ x_2^{a_1} = x_2^{-1}, \ x_3^{a_1} = x_3^{-1}, \ x_4^{a_1} = x_4^{-1}, $ $x_1^{a_2} = x_1^{-1}, \ x_2^{a_2} = x_2, \ x_3^{a_2} = x_3, \ x_4^{a_2} = x_4$ $C_3^2 \times_{\lambda} (C_4 \times C_2) = \langle x_1, x_2 \rangle \times_{\lambda} (\langle a_1 \rangle \times \langle a_2 \rangle) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_1^{a_1} = x_1^{-1}, \ x_2^{a_1} = x_2^{-1}, \ x_1^{a_2} = x_1, \ x_2^{a_2} = x_2^{-1}$ $C_2 \times \Sigma_3 \times \Sigma_3 \qquad r = 18, \ \beta(G) = 3$			$r = 24$, $\beta(G) = 2$
$(C_{3}^{2} \times_{f} C_{2}) \times D_{14} \qquad r = 30, \ \beta(G) = 2$ $(C_{3} \times C_{11} \times C_{3}) \times_{\lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \text{ with } \qquad r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, \ x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{1}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}^{-1},$ $x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}^{-1},$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}, \ x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$			
$(C_{3} \times C_{11} \times C_{3}) \times_{\lambda} C_{2}^{2} = (\langle x_{1} \rangle \times \langle x_{2} \rangle \times \langle x_{3} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \text{ with } r = 39, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{3}^{a_{1}} = x_{3}^{-1}, \ x_{4}^{a_{1}} = x_{4}^{-1}, $ $x_{1}^{a_{2}} = x_{1}^{-1}, \ x_{2}^{a_{2}} = x_{2}, \ x_{3}^{a_{2}} = x_{3}, \ x_{4}^{a_{2}} = x_{4}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, \ x_{2}^{a_{1}} = x_{2}^{-1}, \ x_{1}^{a_{2}} = x_{1}, \ x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$			
$x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}^{-1}$ $(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = ((x_{1}, x_{2}, x_{3}) \times (x_{4})) \times_{\lambda} (a_{1}, a_{2}) \qquad r = 48, \ \beta(G) = 6$ with $x_{1}^{a_{1}} = x_{1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{3}^{a_{1}} = x_{3}^{-1}, x_{4}^{a_{1}} = x_{4}^{-1},$ $x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}, x_{4}^{a_{2}} = x_{4}$ $C_{3}^{2} \times_{\lambda} (C_{4} \times C_{2}) = (x_{1}, x_{2}) \times_{\lambda} ((a_{1}) \times (a_{2})) \text{ with } \qquad r = 18, \ \beta(G) = 3$ $x_{1}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{1}^{a_{2}} = x_{1}, x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} \qquad r = 18, \ \beta(G) = 3$			
$(C_{3}^{3} \times C_{5}) \times_{\lambda} C_{2}^{2} = (\langle x_{1}, x_{2}, x_{3} \rangle \times \langle x_{4} \rangle) \times_{\lambda} \langle a_{1}, a_{2} \rangle $ with $x_{1}^{\alpha_{1}} = x_{1}$, $x_{2}^{\alpha_{1}} = x_{2}^{-1}$, $x_{3}^{\alpha_{1}} = x_{3}^{-1}$, $x_{4}^{\alpha_{1}} = x_{4}^{-1}$, $x_{1}^{\alpha_{2}} = x_{1}^{-1}$, $x_{2}^{\alpha_{2}} = x_{2}$, $x_{3}^{\alpha_{2}} = x_{3}$, $x_{4}^{\alpha_{2}} = x_{4}$ $C_{3}^{\alpha} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with } $ $x_{1}^{\alpha_{1}} = x_{1}^{-1}$, $x_{2}^{\alpha_{1}} = x_{2}^{-1}$, $x_{1}^{\alpha_{2}} = x_{1}$, $x_{2}^{\alpha_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3} $ $r = 18$, $\beta(G) = 3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 - 39, $p(O) - 3$
$x_{1}^{a_{2}} = x_{1}^{-1}, x_{2}^{a_{2}} = x_{2}, x_{3}^{a_{2}} = x_{3}, x_{4}^{a_{2}} = x_{4}$ $C_{3}^{a} \times_{\lambda} (C_{4} \times C_{2}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle a_{1} \rangle \times \langle a_{2} \rangle) \text{ with }$ $x_{1}^{a_{1}} = x_{1}^{-1}, x_{2}^{a_{1}} = x_{2}^{-1}, x_{1}^{a_{2}} = x_{1}, x_{2}^{a_{2}} = x_{2}^{-1}$ $C_{2} \times \Sigma_{3} \times \Sigma_{3}$ $r = 18, \beta(G) = 3$		$(C_3^3 \times C_5) \times_{\lambda} C_2^2 = (\langle x_1, x_2, x_3 \rangle \times \langle x_4 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle$	$r=48,\ \beta(G)=6$
$x_1^{a_1} = x_1^{-1}, \ x_2^{a_1} = x_2^{-1}, \ x_1^{a_2} = x_1, \ x_2^{a_2} = x_2^{-1}$ $C_2 \times \Sigma_3 \times \Sigma_3$ $r = 18, \ \beta(G) = 3$		$x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3, x_4^{a_2} = x_4$	
$C_2 \times \Sigma_3 \times \Sigma_3$ $r = 18, \ \beta(G) = 3$			$r=18, \ \beta(G)=3$
			$r = 18, \ \beta(G) = 3$
		- · ·	

TABLE 10 (contd.)

G/S(G)	r(G)
	$(C_3 \times C_7^2) \times_{\lambda} C_2^2 = (\langle x_1 \rangle \times \langle x_2, x_3 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with}$ $x_1^{a_1} = x_1, \ x_2^{a_1} = x_2^{-1}, \ x_3^{a_1} = x_3^{-1}, \ x_1^{a_2} = x_1^{-1}, \ x_2^{a_2} = x_2, \ x_3^{a_2} = x_3^{-1}$	$r=51, \ \beta(G)=3$
	$(C_7 \times C_5^2) \times_{\lambda} C_2^2 = (\langle x_1 \rangle \times \langle x_2, x_3 \rangle) \times_{\lambda} \langle a_1, a_2 \rangle \text{ with } $ $x_1^{a_1} = x_1, x_2^{a_1} = x_2^{-1}, x_3^{a_1} = x_3^{-1}, x_1^{a_2} = x_1^{-1}, x_2^{a_2} = x_2, x_3^{a_2} = x_3^{-1}$	$r=58, \ \beta(G)=3$
D_{t0}	$(C_3 \times C_2^4) \times_{\lambda} D_{10} = (\langle x \rangle \times \langle y_1, \dots, y_4 \rangle) \times_{\lambda} (\langle a \rangle \times_f \langle b \rangle) \text{ with }$ $x^a = x, x^b = x^{-1}, y_1^a = y_2, y_2^a = y_3, y_3^a = y_4, y_4^a = y_1 y_2 y_3 y_4,$ $y_1^b = y_1, y_2^b = y_1 y_2 y_3 y_4, y_3^b = y_4, y_4^b = y_3$	$r=18, \ \beta(G)=2$
A_4	$C_2 \times SL(2,3)$	$r=14,\ \beta(G)=3$
C ₅		
Q_8	$(C_5 \times H) \times_{\lambda} Q_8 = (\langle x \rangle \times H) \times_{\lambda} \langle a, b \rangle$ with $x^a = x^{-1}$, $x^b = x$ and $HQ_8 = H \times_f Q_8$	r = 13 + 5(H - 1)/8
D_8	$C_7^2 \times_{\lambda} D_8 = \langle x, y \rangle \times (\langle a \rangle \times_{\lambda} \langle b \rangle)$ with $x^a = y$, $y^a = x^{-1}$, $x^b = x$, $y^b = y^{-1}$	$r=20, \ \beta(G)=1$
D_{14}		
Hol C ₅		
$C_7 \times_f C_3$	$C_{2}^{6} \times_{\lambda} (C_{7} \times_{f} C_{3}) = \langle x_{1}, \dots, x_{6} \rangle \times_{\lambda} (\langle a \rangle \times_{f} \langle b \rangle)$ with $x_{i}^{a} = x_{i+1}, x_{6}^{a} = x_{1} \cdots x_{6}, x_{1}^{b} = x_{1}, x_{2}^{b} = x_{3},$ $x_{3}^{b} = x_{5}, x_{4}^{b} = x_{1} \cdots x_{6}, x_{5}^{b} = x_{2}, x_{6}^{b} = x_{4}$	$r=16, \ \beta(G)=1$
	$C_{2}^{6} \times_{\lambda} (C_{2} \times_{f} C_{3}) = \langle x_{1}, \dots, x_{6} \rangle \times_{\lambda} (\langle a \rangle \times_{f} \langle b \rangle)$ with $x_{1}^{a} = x_{2}$, $x_{2}^{a} = x_{3}$, $x_{3}^{a} = x_{1}x_{2}$, $x_{4}^{a} = x_{5}$, $x_{5}^{a} = x_{6}$, $x_{6}^{a} = x_{4}x_{5}$, $x_{1}^{b} = x_{1}$, $x_{2}^{b} = x_{3}$, $x_{3}^{b} = x_{2}x_{3}$, $x_{4}^{b} = x_{4}$, $x_{5}^{b} = x_{6}$, $x_{6}^{b} = x_{5}x_{6}$	$r = 16, \ \beta(G) = 3$
Σ4	$C_{3}^{3} \times_{\lambda} \Sigma_{4} = \langle x_{1}, x_{2}, x_{3} \rangle \times_{\lambda} (\langle a_{1}, a_{2} \rangle \times_{\lambda} (\langle b \rangle \times_{\lambda} \langle c \rangle))$ with $a_{1}^{b} = a_{2}$, $a_{2}^{b} = a_{1}a_{2}$, $a_{1}^{c} = a_{1}$, $a_{2}^{c} = a_{1}a_{2}$, $b^{c} = b^{-1}$ $b^{3} = 1$, $c^{2} = 1$, $a_{1}^{2} = 1$, $i = 1, 2$, $x_{1}^{a_{1}} = x_{1}$, $x_{2}^{a_{1}} = x_{2}^{-1}$, $x_{3}^{a_{1}} = x_{3}^{-1}$, $x_{1}^{a_{2}} = x_{1}^{-1}$, $x_{2}^{a_{2}} = x_{2}$, $x_{3}^{a_{2}} = x_{3}^{-1}$, $x_{1}^{b} = x_{2}$, $x_{2}^{b} = x_{3}$, $x_{3}^{b} = x_{1}$, $x_{1}^{c} = x_{1}^{-1}$, $x_{2}^{c} = x_{3}^{-1}$, $x_{3}^{c} = x_{2}^{-1}$	$r=14, \ \beta(G)=1$
A ₅	$C_2^4 \times_{\lambda} \text{SL}(2,5) = \langle x_1, x_2, x_3, x_4 \rangle \times_{\lambda} \langle a, b, c \rangle \text{ with } a^5 = b^3 = c^2 = 1,$ $(ab)^2 = c, \ a^c = a, \ b^c = b, \ x_1^a = x_2, \ x_2^a = x_3, \ x_3^a = x_4,$ $x_4^a = x_1 x_2 x_3 x_4, \ x_1^b = x_1 x_2, \ x_2^b = x_1, \ x_3^b = x_2 x_3 x_4, \ x_4^b = x_1 x_3$	$r=14, \ \beta(G)=2$
	$C_2^5 \cdot A_5$ the only perfect extension of A_5 by C_2^5 which admits neither complement nor supplement $C_2^5 \cdot A_5 = \langle x_1, x_2, x_3, x_4, x_5, c, d \rangle$ with $c^3 = 1 = d^5, \langle x_1, \dots, x_5 \rangle \approx C_2^5, \langle cd \rangle^2 = x_1, x_1^c = x_2, x_2^c = x_3, x_3^c = x_5, x_4^c = x_1, x_5^c = x_4, x_1^d = x_3, x_2^d = x_1, x_3^d = x_2, x_4^d = x_1x_2x_3x_4x_5, x_3^d = x_4$	$r=14,\ \beta(G)=1$
C ₆	$(C_1^4 \times H) \times_{\lambda} C_6 = (\langle x_1, y_1, x_2, y_2 \rangle \times H) \times_{\lambda} \langle a \rangle \text{ with}$ $x_i^a = y_i, \ y_i^a = x_i y_i, \ i = 1, 2, \ H\langle a \rangle = H \times_{f} \langle a \rangle$ $(C_1 \times C_2^4 \times D) \times_{f} C_2 = \langle (x_1, y_1, x_2, y_2) \times H \rangle \times_{f} \langle a \rangle \text{ with } D = 1 \text{ or } H$	r = 16 + 8(H - 1)/3 $r = 14 + (10 D - 4)/3$
	$(C_5 \times C_2^2 \times D) \times_{\lambda} C_6 = (\langle x \rangle \times \langle y, z \rangle \times D) \times_{\lambda} \langle a \rangle \text{ with } D = 1 \text{ or } H$ $x^a = x^{-1}, \ y^a = z, \ z^a = yz, \ D\langle a \rangle = D \times_f \langle a \rangle$	r = 14 + (10 D - 4)/3

TABLE 10 (contd.)

G/S(G)	G	r(G)
	$C_2 \times (H \times_I C_b)$ $H \times_{\lambda} C_{12} = H \times_{\lambda} \langle a \rangle$ with $C_H(a^b) = H$ and a, a^2, a^3 acting f.p.f. over H	r = 12 + (H - 1)/3 r = 12 + (H - 1)/3
D_{12}	$C_2^2 \times_{\lambda} (C_3 \times_{\lambda} D_8) = (x_1, x_2) \times_{\lambda} ((c) \times_{\lambda} (a, b))$ with $a^4 = 1 = b^2$, $a^b = a^{-1}$, $c^b = c$, $c^a = c^{-1}$, $x_1^a = x_1, x_2^a = x_1 x_2, x_1^c = x_2, x_2^c = x_1 x_2, x_1^b = x_1, x_2^b = x_2$	$r=14,\ \beta(G)=2$
	$C_2^2 \times_{\lambda} (C_3 \times_{\lambda} D_8) = \langle x_1, x_2 \rangle \times_{\lambda} (\langle c \rangle \times_{\lambda} \langle a, b \rangle)$ with $a^4 = 1 = b^2, \ a^b = a^{-1}, \ c^b = c^{-1}, \ c^a = c, \ x_1^a = x_1,$	$r=14, \ \beta(G)=2$
	$x_{2}^{a} = x_{2}, x_{1}^{c} = x_{2}, x_{2}^{c} = x_{1}x_{2}, x_{1}^{b} = x_{1}, x_{2}^{b} = x_{1}x_{2}$ $C_{2}^{2} \times_{\lambda} (C_{3} \times_{\lambda} Q_{8}) = \langle x_{1}, x_{2} \rangle \times_{\lambda} (\langle c \rangle \times_{\lambda} \langle a, b \rangle)$ with $c^{a} = c^{-1}, c^{b} = c, a^{b} = a^{-1}, x_{1}^{a} = x_{1}, x_{2}^{a} = x_{1}x_{2},$ $x_{1}^{c} = x_{2}, x_{2}^{c} = x_{1}x_{2}, x_{1}^{b} = x_{1}, x_{2}^{b} = x_{2}$	$r=14, \ \beta(G)=2$
DC ₃	$C_2 \times (H \times_f DC_3)$ $H \times_{\lambda} (C_3 \times_{\lambda} C_8) = H \times_{\lambda} ((a) \times_{\lambda} (b))$ with	r = 12 + (H - 1)/6 r = 12 + (H - 1)/6
	$a^b = a^{-1}$, $C_H(b^2) = H$ and a , b^2 acting f.p.f. over H $H \times_{\lambda} (C_9 \times_{\lambda} C_4) = H \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)$ with $a^b = a^{-1}$, $C_H(a^3) = H$, and a , b^2 acting f.p.f. over H	r = 12 + (H - 1)/4
	$(C_3 \times H) \times_{\lambda} DC_3 = (\langle x \rangle \times H) \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)$ with $x^a = x$, $x^b = x^{-1}$, $H(a, b) = H \times_f \langle a, b \rangle$	r = 12 + (H - 1)/4
	$(C_5 \times C_2^2 \times D) \times_{\lambda} DC_3 = (\langle x \rangle \times \langle x_1, x_2 \rangle \times D) \times_{\lambda} (\langle a \rangle \times_{\lambda} \langle b \rangle)$ with $D = 1$ or H , $x^a = x$, $x^b = x^2$, $x_1^a = x_2$, $x_2^a = x_1 x_2$, $x_1^b = x_1, x_2^b = x_1 x_2 \text{ and } D\langle a, b \rangle = D \times_f \langle a, b \rangle$	r = 14 + 5(D - 1)/3
D_{18}		-
$C_3^2 \times_f C_2$	$C_{2}^{4}\times_{\lambda}\left(C_{3}^{2}\times_{f}C_{2}\right)=\left\langle x_{1},x_{2},x_{3},x_{4}\right\rangle\times_{\lambda}\left(\left\langle a_{1},a_{2}\right\rangle\times_{f}\left\langle b\right\rangle\right)$ with $x_{1}^{a_{1}}=x_{1}, x_{2}^{a_{1}}=x_{2}, x_{3}^{a_{1}}=x_{4}, x_{4}^{a_{1}}=x_{3}x_{4}, x_{1}^{b}=x_{1},$ $x_{2}^{b}=x_{1}x_{2}, x_{1}^{a_{2}}=x_{2}, x_{2}^{a_{2}}=x_{1}x_{2}, x_{3}^{a_{2}}=x_{3}, x_{4}^{a_{2}}=x_{4},$ $x_{3}^{b}=x_{3}, x_{4}^{b}=x_{3}x_{4}$	$r=14,\ \beta(G)=2$
$C_3^2 \times_f C_4$	$C_{2}^{4}\times_{\lambda} (C_{3}^{2}\times_{f}C_{4}) = \langle x_{1}, \dots, x_{4}\rangle \times_{\lambda} (\langle a_{1}, a_{2}\rangle \times_{f} \langle b \rangle)$ with $a_{1}^{b} = a_{2}$, $a_{2}^{b} = a_{1}^{-1}$, $x_{1}^{a_{1}} = x_{2}$, $x_{2}^{a_{1}} = x_{1}x_{2}$, $x_{3}^{a_{1}} = x_{3}$, $x_{4}^{a_{1}} = x_{4}$, $x_{2}^{a_{2}} = x_{2}$, $x_{3}^{a_{3}} = x_{4}$, $x_{4}^{a_{2}} = x_{3}x_{4}$, $x_{1}^{b} = x_{3}$, $x_{2}^{b} = x_{4}$, $x_{3}^{b} = x_{1}$, $x_{4}^{b} = x_{1}$	
$C_3^2 \times_f Q_8$		
PSL(2,7)		
C ₇		
Q_{16}	$(C_3 \times H) \times_{\lambda} Q_{16} = (\langle x \rangle \times H) \times_{\lambda} \langle a, b \rangle$ with $x^a = x^{-1}$, $x^b = x$, and $HQ_{16} = H \times_f Q_{16}$	$r = 12 + 3 \cdot (H - 1)/16$
SD ₁₆	$C_3^4 \times_{\lambda_1} SD_{16} = \langle x_1, y_1, x_2, y_2 \rangle \times_{\lambda} \langle a, b \rangle \text{ with } x_i^a = y_i, y_i^a = x_i y_i,$ $x_i^b = x_i, y_i^b = x_i y_i^{-1}, i = 1, 2, a^8 = 1 = b^2, a^b = a^3$ $C_3^4 \times_{\lambda_2} SD_{16} = \langle x_1, x_2, x_3, x_4 \rangle \times_{\lambda} \langle a, b \rangle \text{ with } x_i^a = x_2, x_2^a = x_3,$ $x_3^a = x_4, x_4^a = x_1^{-1}, x_1^b = x_1, x_2^b = x_4, x_3^b = x_3^{-1}, x_4^b = x_2$	$r = 18, \ \beta(G) = 4$ $r = 18, \ \beta(G) = 1$

Table 10 (contd.)

$$G/S(G) \qquad G \qquad r(G)$$
SL(2,3) $(C_3^2 \times H) \times_3 \text{SL}(2,3) = \{(x_1, x_2) \times H) \times_4 \{(a, b) \times_4 (c)\} \qquad r = 12 + (|H| - 1)/6$
with $a^c = b, b^c = ab, x^c = x = x^c, i = 1, 2, x^i = x_2, x^i = x_2, x^i = x_1, x_2, x_3 = x_4, x_4 = x_1, x_2, x_4 = x_2, x_4 = x_4, x_4 = x_4, x_5 = x_5, x_5 = x_5$

 $P_1 = C_2^4 \times_{\lambda} C_2^2 = \langle z_1, z_2, a_1, a_2 \rangle \times_{\lambda} \langle b_1, b_2 \rangle$ with

TABLE 10 (contd.)

G/S(G)	G	r(G)
	$z_1^{b_j} = z_i$, $i, j = 1, 2$, $a_1^{b_1} = a_1 z_1$, $a_1^{b_2} = a_1 z_2$, $a_2^{b_1} = a_2 z_2$, $a_2^{b_2} = a_2 z_1 z_2$ and $b_1^a = b_1 b_2$, $b_2^a = b_1$, $b_1^b = b_2$, $b_2^b = b_1$.	
	$a_2^2 = a_2 z_1 z_2$ and $b_1 = b_1 b_2$, $b_2 = b_1$, $b_1 = b_2$, $b_2 = b_1$, $z_1^a = z_2$, $z_2^a = z_1 z_2$, $a_1^a = a_1 a_2$, $a_2^a = a_1$, $z_2^b = z_1 z_2$, $z_2^b = z_2$.	
	$a_1^b = a_2$, $a_2^b = a_1$ (P_1 is a 2-group of type PSL(3,4))	
$C_2^4 \times_{\lambda} C_6$	$P_1 \times_{\lambda} C_6 = P_1 \times_{\lambda} \langle ab \rangle$ with P_1 as above, and	$r = 12, \ \beta(G) = 1$
02 X 00	$z_1^a = z_2, \ z_2^a = z_1 z_2, \ a_1^a = a_1 a_2, \ a_2^a = a_1, \ b_1^a = b_1 b_2, \ b_2^a = b_1,$,,,,
	$z_1^b = z_1, \ z_2^b = z_2, \ a_1^b = b_1b_2, \ a_2^b = b_1, \ b_1^b = a_2, \ b_2^b = a_1a_2$	
	$P_2 \times_{\lambda} C_6 = P_2 \times_{\lambda} \langle \alpha \beta \rangle$ with $P_2 = C_4^2 \cdot C_4^2 = \langle a, b \rangle \cdot \langle c, d \rangle$,	$r=12, \beta(G)=1$
	$[a,b] = [c,d] = 1, c^2 = b^2, d^2 = a^2b^2, [a,c] = a^2,$	
	$[a,d] = [b,c] = d^2$, $[b,d] = b^2$ and $C_6 = \langle \alpha \beta \rangle$ with relations	
	$a^{\alpha} = b, \ b^{\alpha} = a^{-1}b^{-1}, \ c^{\alpha} = d, \ d^{\alpha} = c^{-1}d^{-1},$	
	$a^{\beta} = cd, \ b^{\beta} = c^{-1}, \ c^{\beta} = b^{-1}, \ d^{\beta} = ab$	
	$(P_2 \text{ is a 2-group of type PSU}(3,4))$	

If $\bar{G} = \langle \bar{a} \rangle \times_f \langle \bar{b} \rangle \simeq \Sigma_3$, then Lemmas 2.4 and 2.13 of [25] yield $r_G(aS(G)) \ge 3$ and $r_G(bS(G)) \ge 4$ respectively, impossible.

So then, either $G/S(G) \simeq C_3$ or $G/S(G) \simeq C_2$ with $\alpha(G) \in \{5,6\}$ and $r(G) \le 12$.

If $G/S(G) = \langle \overline{b} \rangle \simeq C_3$, then necessarily $r_G(bS(G)) = 3 = r_G(b^{-1}S(G))$, hence $\alpha(G) = 6$ and $r_G(A) = 6$. If $|\{o(g) \mid g \in A\}| \le 5$, then A is isomorphic to one of the following groups: A_5 , A_6 , PSL(2,7), SL(2,8), so $G = \text{P}\Gamma\text{L}(2,8)$ ($\alpha(G) = 6$). On the other hand, if $|\{o(g) \mid g \in A\}| = 6$, then r(G) = 11 or 12 and $r_G(A) = 6$ implies that " $a_1 \sim_G a_2$ iff $o(a_1) = o(a_2)$ " for every $a_1, a_2 \in A$. Let s be the number of conjugate classes of A fixed by conjugation of b. Then $6 = \alpha(G) = s \cdot 2$ implies s = 3 and

$$r(A) = 3 + (r_G(A) - 3) \cdot 3 = 12,$$

hence $A \in \{M_{22}, PSL(3,3), PSL(2,19)\}$ which is impossible.

Finally, we consider only the case $G/S(G) \simeq C_2$. Then r(G) = 2s + (r(A) - s)/2 with $s = \alpha(G)$, and $r(A) = s + (r_G(A) - s) \cdot 2 = s + (6 - s) \cdot 2$. If s = 6, then r(A) = 6 and A = PSL(2, 7), impossible. Thus we have s = 5 and r(A) = 7, hence either $G \simeq PSL(2, 9)$ ($\alpha(G) = 5$) or $G \simeq \Sigma_6$ ($\alpha(G) = 5$).

LEMMA 1.14. Let G be a non-nilpotent group with S(G) abelian and satisfying the conditions $\alpha(G) = 10$ and $r(G/S(G)) \le 10$. Then G is isomorphic to one group of Table 10.

PROOF. The reasonings are similar to the ones followed in Lemma 4.2 of [25] for $\alpha(G) \leq 9$, and for that reason we don't repeat them here.

LEMMA 1.15. Let G be a non-nilpotent group with S(G) solvable. If $\alpha(G) = 10$ and r(G/S(G)) = 11, then G is isomorphic to one of the following groups:

- (1) $H \times_f C_{11}$ (r = 11 + (|H| 1)/11),
- (2) $Y \times_t Q_2$ (r = 11 + (|Y| 1)/27),
- (3) $H \times_{f} Q_{32}$ (r = 11 + (|H| 1)/32).

PROOF. Let's assume r(G/S(G)) = 11. Then $|C_{\bar{G}}(\bar{x})| = |C_{G}(x)|$ for every $x \in G - S(G)$, where $\bar{G} = G/S(G)$, and the result follows immediately from Lemma 2.3 (cf. [25]) observing the tuples $\Delta_{\bar{G}}$ for $r(\bar{G}) = 11$ from Table 3 of [25].

LEMMA 1.16. Let G be a nilpotent group such that $\alpha(G) \leq 10$. Then G is isomorphic to one of the following groups:

Abelian: 1, C_4 , C_8 , $C_2 \times C_4$, C_9 , $C_4 \times C_2^2$, C_{12} , C_{20} , and $Y = C_2^e \times C_{p_1}^{l_1} \times \cdots \times C_{p_s}^{l_s}$.

Non-abelian: D_8 , Q_8 , Q_1 , Q_2 , $C_3 \times D_8$, $C_3 \times Q_8$, $C_2 \times D_8$, $C_2 \times Q_8$, $C_4 \times_{\lambda} C_4 =$ $\langle a \rangle \times_{\lambda} \langle b \rangle$ with $a^b = a^{-1}$, $(C_4 \times C_2) \times_{\lambda_1} C_2 = (\langle a \rangle \times \langle b \rangle) \times_{\lambda_1} \langle c \rangle$ with $a^c = ab$, $b^c = ab$ b. $(C_4 \times C_2) \times_{\lambda_2} C_2 = (\langle a \rangle \times \langle b \rangle) \times_{\lambda_2} \langle c \rangle$ with $a^c = a$, $b^c = a^2 b$, D_{16} , SD_{16} , Q_{16} , $D_{16} \times C_2$, $SD_{16} \times C_2$, $Q_{16} \times C_2$, $(C_8 \times C_2) \times_{\lambda} C_2 = (\langle a \rangle \times \langle b \rangle) \times_{\lambda} \langle c \rangle$ with $a^c = a^{-1}b$, $b^{c} = b$, M_{16} , $(C_{8} \times C_{2}) \cdot C_{4} = (\langle a \rangle \times \langle b \rangle) \cdot \langle c \rangle$ with $c^{2} = a^{4}$, [b, c] = 1, $a^{c} = a^{-1}b$, $C_8 \times_{\lambda_1} C_4 = \langle a \rangle \times_{\lambda_1} \langle b \rangle$ with $a^b = a^{-1}$, $C_8 \times_{\lambda_2} C_4 = \langle a \rangle \times_{\lambda_2} \langle b \rangle$ with $a^b = a^3$, $C_2^4 \times_{\lambda} C_2 = \langle a_1, a_2, a_3, a_4 \rangle \times_{\lambda} \langle b \rangle$ with $a_1^b = a_1$, $a_2^b = a_2$, $a_3^b = a_1 a_3$, $a_4^b = a_2 a_4$, $C_4^2 \times_{\lambda_1} C_2 = (\langle a \rangle \times \langle b \rangle) \times_{\lambda_1} \langle c \rangle$ with $a^c = a^{-1}$, $b^c = b^{-1}$, $(C_4 \times C_4)_1 C_4 = (\langle a \rangle \times \langle b \rangle)_1 \cdot \langle c \rangle$ with $c^2 = a^2$, $a^c = a^{-1}$, $b^c = b^{-1}$, $(C_2^2 \times C_4) \times_{\lambda_1} C_2 = (C_2^2 \times C_4) \times_{\lambda_1} C_4 = (C_2^2 \times$ $(\langle a_1, a_2 \rangle \times \langle a_3 \rangle) \times_{\lambda_1} \langle b \rangle$ with $a_1^b = a_1$, $a_2^b = a_1 a_2$, $a_3^b = a_3^{-1}$, $(C_2^2 \times C_4) \cdot C_4 =$ $(\langle a_1, a_2 \rangle \times \langle a_3 \rangle) \cdot \langle b \rangle$ with $a_1^b = a_1$, $a_2^b = a_1 a_2$, $a_3^b = a_3^{-1}$, $b^2 = a_3^2$, $(C_2^2 \times C_4) \times_{\lambda_2} C_2 =$ $(\langle a_1, a_2 \rangle \times \langle a_3 \rangle) \times_{\lambda_2} \langle b \rangle$ with $a_1^b = a_1$, $a_2^b = a_1 a_2$, $a_3^b = a_1^2 a_3$, $C_4^2 \times_{\lambda_2} C_2 =$ $(\langle a \rangle \times \langle b \rangle) \times_{\lambda_2} \langle c \rangle \quad \text{with} \quad a^c = a^{-1}, \quad b^c = a^2 b^{-1}, \quad (C_4 \times C_4)_2 \cdot C_4 = (\langle a \rangle \times \langle b \rangle)_2 \cdot \langle c \rangle$ with $a^c = a^{-1}$, $b^c = a^2b^{-1}$, $c^2 = (ab)^2$, Hol C_8 , D_{32} , SD_{32} , Q_{32} , $(C_8 \times_{\lambda} C_2) \cdot C_4 =$ $(\langle a \rangle \times_{\lambda} \langle b \rangle) \cdot \langle c \rangle$ with $a^b = a^5$, $a^c = ba$, $b^c = b$, $c^2 = a^4$, $(C_8 \times_{\lambda} C_2) \times_{\lambda} C_2 = a^4$ $(\langle a \rangle \times_{\lambda} \langle b \rangle) \times_{\lambda} \langle c \rangle$ with $a^b = a^5$, $a^c = ba$, $b^c = b$, $C_2^3 \times_{\lambda} C_4 = \langle a, b, c \rangle \times_{\lambda} \langle d \rangle$ with relations $a^d = a$, $b^d = ab$, $c^d = abc$.

PROOF. If G is abelian, it is immediate. On the other hand, in case G is non-abelian, set $G = P_1 \times \cdots \times P_t$ with the P_i Sylow p_i -subgroups of G. Then we have $S(G) = \Omega_1(Z(P_1)) \times \cdots \times \Omega_1(Z(P_t))$. If |G| is divisible by at least two prime numbers, it follows easily that $G \simeq C_3 \times D_8$ of $G \simeq C_3 \times Q_8$. So we can suppose that G is a p-group. If $p \ne 2$, then necessarily p = 3 and $G \simeq Q_1$ or $G \simeq Q_2$. Suppose that G is a 2-group. We have $r(G/S(G)) \le \alpha(G) + 1 = 11$, hence $\overline{G} = G/S(G)$ is isomorphic to one of the following groups: C_2 , C_4 , C_2^2 , D_8 ,

 Q_8 , SD₁₆, Q_{16} , D_{16} , C_8 , $C_2 \times C_4$, C_2^3 , $C_2 \times D_8$, $C_2 \times Q_8$, $C_4 \times_{\lambda} C_4$, $(C_4 \times C_2) \times_{\lambda_1} C_2$, $C_8 \times_{\lambda} C_2$, $(C_4 \times C_2) \times_{\lambda_2} C_2$, D_{32} , Q_{32} , SD₃₂, $Q_{32}^5 \Gamma_6 a_1$, $Q_{32}^5 \Gamma_6 a_2$, $Q_{32}^5 \Gamma_7 a_1$, $Q_{32}^5 \Gamma_7 a_2$, $Q_{32}^5 \Gamma_7 a_3$. If G/S(G) is a cyclic group, then G is abelian, because $S(G) \leq Z(G)$, which is impossible.

If $G/S(G) \simeq C_2^2$, then $\alpha(G) = \sum_{i=1}^3 r_G(d_iS(G))$, so there exists i such that $r_G(d_iS(G)) \le 3$, consequently $3 \ge 2 \cdot |S(G)|/4$, hence $|S(G)| \le 6$, and either |S(G)| = 2, hence $G \in \{D_8, Q_8\}$, or |S(G)| = 4 and G is isomorphic to one of the following groups: $C_2 \times D_8$, $C_2 \times Q_8$, $C_4 \times_{\lambda} C_4$, $(C_4 \times C_2) \times_{\lambda_1} C_2$.

If $G/S(G) \simeq D_8$, then

$$\alpha(G) = |S(G)| + r_G(a^2S(G)) + r_G(bS(G)) + r_G(abS(G))$$
 and $|S(G)| \in \{2, 4\}$.

If |S(G)| = 2, then G is isomorphic to one of the following groups: D_{16} , SD_{16} , Q_{16} , M_{16} , $(C_4 \times C_2) \times_{\lambda_2} C_2$. If |S(G)| = 4, then $G/S(G) \simeq D_8$ with $S(G) = \Omega_1(Z(G)) \simeq C_2^2$. Besides, there exists $b \in G - S(G)$ such that $|C_G(b)| = 8$, because $\alpha(G) \le 10$, so Z(G) = S(G) and $r(G) \le 10 + 4 = 14$. Therefore |G/G'| = 8 and consequently G is one of the ten groups of the first branch of the family Γ_3 (the second branch satisfies $|G/G'| = 2^4$).

Suppose $G/S(G) \simeq Q_8$, then $\alpha(G) = 3|S(G)| + r_G(a^2S(G))$, so |S(G)| = 2, impossible.

Suppose $G/S(G) \in \{D_{16}, SD_{16}, Q_{16}\}$ and let \bar{a} be an element of order 8 in G/S(G), then $2|C_G(a) \cap S(G)| = 2 \cdot |S(G)| \le 10 - 4$, so |S(G)| = 2 and $r(G) \le 12$. Thus $G \in \{D_{32}, SD_{32}, Q_{32}\}$.

In other cases we have |S(G)|=4 for $|G/S(G)| \le 16$ and |S(G)|=2 if |G/S(G)|=32, as follows from a simple inspection of the tuples $\Delta_{\bar{G}}$ and of the fact that $\alpha(G) \le 10$. Therefore $r(G) \le 14$, $|G/G'| \le 2^3$ and in these cases G is a stem group. Further, either G has order 32 and is in one of the families Γ_i , i=2,3,4,6,7, or G is a stem group of order 64 of the families Γ_{22} or Γ_{23} , being for these groups r(G)=13, $Z(G)=S(G)\simeq C_2$ and $\alpha(G)=11$, impossible.

THEOREM 1.17. $G \in \Phi_{11}$ if and only if G is one of the following groups: M_{22} , PSL(3, 3), PSL(2, 19), $C_{37} \times_f C_6$, $C_3^4 \times_f Q_{16}$, $C_{11}^2 \times_f \text{SL}(2, 3)$, $C_2^4 \times_{\lambda_2} A_5$, $C_3^4 \times_f (C_5 \times_{\lambda} C_4)$, $C_{19}^2 \times_f \text{SL}(2, 5)$, $C_2^4 \times_{\lambda} A_6$, $\Sigma_5^{(1)}$, $\Sigma_5^{(2)}$, $C_2^4 \times_{\lambda} \Sigma_5$, $P_1 \times_{\lambda} \Sigma_3$, $P_1 \times_{\lambda} C_6$, $P_2 \times_{\lambda} C_6$, $C_3^4 \times_f (C_5 \times_{\lambda} C_8)$, $C_5^2 \times_{\lambda} C_4$, $C_2^2 \times_{\lambda} (C_{15} \times_f C_2)$, $C_5 \times_{\lambda_1} D_8$, $C_5 \times_{\lambda_2} D_8$, $C_5 \times_{\lambda} Q_8$, $C_2 \times \text{SL}(2,3)$ } $\cup \ 2^5 \Gamma_4 \cup \ \{2^5 \Gamma_3 a_i \mid 1 \le i \le 3\} \cup \ \{2^5 \Gamma_3 c_i \mid 1 \le i \le 2\} \cup \ \{2^5 \Gamma_3 d_1, 2^5 \Gamma_3 d_2\} \cup \ \{C_3^4 \times_f Q_8, \ (C_3 \times C_9) \times_f C_2, \ C_7^2 \times_f C_3\}$.

PROOF. If is an immediate consequence from Theorem 2.17 [25], Lemma 2.18 [25], Lemma 2.19 [25], Lemma 2.20 [25], Theorem 3.2 [25], Lemma 4.1 [25],

Lemma 4.2 [25], Lemma 4.5 [25], Lemma 4.8 [25], Lemma 4.11 [25], Lemma 4.14 [25], and Lemmas 1.8, 1.13, 1.14, 1.15 and 1.16.

COROLLARY 1.18. r(G) = 12 iff G is isomorphic to one of the groups listed in Table 1.

COROLLARY 1.19. (1) r(G) = 13 and $\beta(G) > 1$ iff G is isomorphic to one of the groups listed in Table 2(i).

- (2) r(G) = 13, $\beta(G) = 1$ and $0 \le \alpha(G) \le 4$ iff G is isomorphic to one of the group listed in Table 2(ii).
- (3) r(G) = 13, $\beta(G) = 1$, $5 \le \alpha(G) \le 10$ and S(G) is solvable iff G is isomorphic to one of the group listed in Table 2(iii).

COROLLARY 1.26. (1) There are no groups satisfying r(G) = 20 and $\beta(G) > 8$.

- (2) r(G) = 20, $\beta(G) \le 8$ and $0 \le \alpha(G) \le 4$ iff G is isomorphic to one of the groups listed in Table 9(ii).
- (3) r(G) = 20, $\beta(G) \le 8$, $5 \le \alpha(G) \le 1$ and S(G) is solvable iff G is isomorphic to one of the group listed in Table 9(iii).

COROLLARY 1.27. Set $n \in \mathbb{N}$, $n \ge 21$. Then r(G) = n and $\beta(G) = n - a$ with $1 \le a \le 11$, if and only if $G \in \{F'_{1,1}, F'_{12,2}, F'_{13,3}, F'_{14,4}, F'_{15,5}, F'_{16,6}, F'_{17,7}, F'_{18,8}\}$ with $t_1 = \log_2 n$, $t_2 = \log_3(2n-3)$, $t_3 = (\log_2(3n-8))/2$, $t_4 = \log_5(4n-15)$, $t_5 = \log_7(6n-35)$, $t_6 = (\log_2(7n-48))/3$, $t_7 = (\log_3(8n-63))/2$, $t_8 = \log_{11}(10n-99)$, and where $F'_{1,i}$ denote $F_{1,i}$ if t is a natural number, and is otherwise dropped from the list.

PROOF. It follows from Theorem 4.3 [25], Theorem 4.6 [25], Theorem 4.9 [25], Theorem 4.12 [25], Theorem 4.15 [25] and Theorem 1.17.

REFERENCES

- 1. A. G. Aleksandrov and K. A. Komissarcik, Simple groups with a small number of conjugacy classes, in Algorithmic Studies in Combinatorics (Russian), Nauka, Moscow, 1978, pp. 162-172, 187.
 - 2. W. Burnside, Theory of Groups of Finite Order, 2nd eds., Dover, 1955.
- 3. A. R. Camina, Some conditions which almost characterize Frobenius groups, Isr. J. Math. 31 (1978), 153-160.
- 4. D. Chillag and I. D. Macdonald, Generalized Frobenius groups, Isr. J. Math. 47 (1984), 111-122.
- 5. M. J. Collins and B. Rickman, Finite groups admitting an automorphism with two fixed points, J. Algebra 49 (1977), 547-563.
- 6. W. Feit and J. Thompson, Finite groups which contain a self-centralizing subgroup of order three, Nagoya Math. J. 21 (1962), 185-197.

- 7. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- 8. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Am. Math. Soc. 147 (1974).
- 9. K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra 33 (1975), 144-160.
 - 10. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- 11. M. I. Kargapolov and Ju. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1976.
- 12. L. F. Kosvintsev, Over the theory of groups with properties given over the centralizers of involutions, Sverdlovsk (Ural.), Summary thesis Doct., 1974.
- 13. J. D. Macdonald, Some p-groups of Frobenius and extra-special type, Isr. J. Math. 40 (1981), 350-364.
 - 14. A. Mann, Conjugacy classes in finite groups Isr. J. Math. 31 (1978), 78-84.
 - 15. F. M. Markell, Groups with many conjugate elements, J. Algebra 26 (1973), 69-74.
 - 16. D. W. Miller, On a theorem of Hölder, Math. Monthly 65 (1958), 252-254.
- 17. V. A. Odincov and A. I. Starostin, Finite groups with 9 classes of conjugate elements (Russian), Ural. Gos. Univ. Math. Zap. 10, Issled Sovremen, Algebre, 152 (1976), 114-134.
 - 18. D. Passman, Permutation Groups, Harper and Row, New York, 1968.
- 19. J. Poland, Finite groups with a given number of conjugate classes, Canad. J. Math. 20 (1969), 456-464.
 - 20. J. S. Rose, A Course on Group Theory, Cambridge Univ. Press, London, 1978.
- 21. D. I. Sigley, Groups involving five complete sets of non-invariant conjugate operators, Duke Math. J. 1 (1935), 477-479.
- 22. M. Suzuki, On finite groups containing an element of order 4 which commutes only with its own powers, Ann. Math. 3 (1959), 255-271.
- 23. J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578-581.
- 24. A. Vera López and J. Vera López, Clasificación de grupos nilpotentes finitos según el número de clases de conjugación y el de normales minimales, Acta VIII J. Mat. Hisp-Lus. Coimbra 1 (1981), 245-252.
- 25. A. Vera López and J. Vera López, Classification of finite groups according to the number of conjugacy classes, Isr. J. Math. 51 (1985), 305-338.