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A B S T R A C T  

In the following, G denotes a finite group, r(G) the number of conjugacy 
classes of G, /3 (G)  the number of minimal normal subgroups of G and c~(G) 
the number of conjugate classes of G not contained in the socle S(G). Let 
dp~ = { G I [ J ( G ) = r ( G ) - j } .  In this paper, the family dp. is classified. In 
addition, from a simple inspection of the groups with r(G) = b conjugate classes 

• 11 . . • 
that appear in I.]~=~dpj, we obtain all fimte groups sahsfymg one of the 
following conditions: (1) r ( G ) =  12; (2) r(G)= 13 and / 3 ( G ) > l ;  . . . ;  (9) 
r(G) = 20 and/3(G)  > 8; (10) r(G) = n and/3(G)  = n - a with 1 _-< a < 11, for 
each integer n >= 21. Also, we obtain all finite groups G with 13 _-< r(G) < 20, 
f l (G)<-r(G)-12,  and satisfying one of the following conditions: (i) 0<= 
a(G)_-<4; (ii) 5 _  <- a(G)<= 10 and S(G) solvable. 

1. Introduction 

In this work, G will denote a finite group, r = r(G) the number of conjugacy 

classes, /3(G) the number of minimal normal subgroups of G, and a(G) the 

number of conjugate classes of G not contained in the socle S(G). 
The possibility of classifying finite groups according to the number r(G) and 

to some properties of their conjugacy classes was suggested in [2]. 

The classification of all finite groups with r(G)=< 9 was carried out in a series 

of papers by G. A. Miller and W. Burnside (r(G) =< 5, cf. [2] Note A, 1910), D. I. 

Sigley (r(G)= 6, [21], 1935), J. Poland (r(G)= 7, [19], 1966), L. F. Kosvintsev 

(r(G) - 8, [12], 1974) and V. A. Odincov, A. I. Starostin (r(G) = 9, [17], 1976). 

In 1978, A. G. Aleksandrov and K. A. Komissarcik ([1]) found all finite simple 

groups with r(G) <= 12. 
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In [25] we approached the problem of classifying finite groups according to the 

number r(G) through the classification of the families qbj = { G  I / 3 ( G ) =  

r(G)-j} for small values of the natural number j. The families qb~, i =  

1 , 2 , . . . ,  10 are classified and as an immediate corollary, the previously known 

classification of finite groups with r(G) =< 9 is found, as well as that of those finite 

groups satisfying one of the following conditions: 

(i) r(G)= 10, 

(ii) r(G)= 11, 

(iii) r(G) = n and / 3 ( G ) =  n - a with 1 ~ a =< 10, for each integer n = 12. 

In this paper, all groups G with /3(G) - r(G)- 11 are classified. Using the 

results of [25], we obtain as an immediate corollary all finite groups satisfying 

one of the following conditions: 

(1) r(G)= 12, 

(2) r(G) = 13 and / 3 ( G ) >  1, 

(3) r ( G ) =  14 and / 3 ( G ) > 2 ,  

(9) r ( G ) = 2 0  and / 3 ( G ) > 8 ,  

(10) r(G)= n and /3(G) = n - a with 1-< a <= 11, for each integer n _->21. 

Moreover,  we obtain all finite groups G with 13 =< r (G )  =< 20 and / 3 ( G ) =  < 

r(G)-12, and satisfying one of the following conditions: 

(a) 0<_- a(G)<=4,  

(b) 5_- < a(G)<= 10 and S(G) solvable. 

We shall follow closely the notation introduced in [25]. If ~ / S  C_ G, we 

define 

r~ (S) = T{Cl~ (g)l Cl~ (g) n S#.O} r. 

A c _ In addition, if S is a normal set in G, we define s - ([ C~(x,)] . . . . .  I Co(x,)l), if 

1C~ (x,)] -> . . -  _-> ] CG (x,)[ and S = CI~ (x,) 0 . - .  0 CI~ (x,). In particular, if S (G)  

denotes the socle of G and So = Ug~(xS(G)) ~, then we write A~ = Ax~ = A~s,,. 
A c - Finally, in case S = G ,  w e s e t  s - A ~ .  

Also, (a)  = Cm denotes a cyclic group of order m generated by a, £~,~ denotes 

the two non-isomorphic proper  coverings of 2£m by C2, and 

M2" =(a,b la  2°-'= 1 = b 2, a b = a ~.2" ') 

denotes the ordinary non-abelian group of order  2". 

Now, the finite groups satisfying conditions (1)-(9) are described in Tables 1-9. 

These tables list the r-tuples A~ and the structures of G/S(G). 
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TABLE 1 
The finite groups with exactly twelve conjugacy classes 

G Aa G/S(G) Reference 

G x C ~  

G~ 

G x ~ C ~  

C. x .Y.;~ 

C~ x Y., 

( 7 2  X D C 3  

(73 x Dm 

G x (C~x~C2) 

C~x, C, 

C, x A ,  

C~x~ C, 

C1x~ C~ 

(G x C~)xIG 

C, x~ O.~ 

C3xa SD,6 

E3 x Dm 

C~ x~ C~ 

E3 X A,  

G x (C~ xl C,) 

(C~ x C,)xrC, 

(C~ x O d x ,  G 

12 

(12 . . . . . .  12) 

12 

(12 . . . . . .  12) 

4 4 4 

(24 . . . .  24,12 . . . . .  12,8 . . . . .  8) 

4 4 4 

(24 . . . .  24, 12 . . . . .  12, 8 . . . . .  8) 

4 4 4 

(24 . . . .  24, 12 . . . . .  12, 8,. • . , 8) 

,~ 4 4 

(24 . . . .  24, 12 . . . . .  12,8 . . . . .  8) 

6 

(30,30,30,15 . . . . .  15,6,6,6) 

8 

(36,36, 18 . . . . .  18,4,4) 

8 

(36, 36,18 . . . . .  18, 4, 4) 

6 

(36, 36, 36,12,12, 12, 9 . . . . .  9) 

8 

(36, 36,18 . . . . .  18, 4, 4) 

6 

(36,36,36,12,12, 12,9 . . . . .  9) 

Io 

(42, 21 . . . . . . .  21, 2) 

4 

(48,48,24,24,24, 12 . . . . .  12,8,8,4) 

4 

(48,48,48,24,24, 12 . . . . .  12,8,8,4) 

4 

(48,48,48,24,24,12 . . . . .  12,8,8,4) 

(60,30,30,30,20, 15,15,12,10,10,6,4) 
4 6 

(72,72,18 . . . . .  18,8 . . . . .  8) 

(72,36,24,24,18,18,12,9,9,8,6,6) 

(72,72, 18 . . . . .  18,8 . . . . .  8) 

9 

(84,28 . . . . .  28,3,3) 

4 4 

(96,96,32,32, 16 . . . . .  16,6 . . . . .  6) 

1 (2.17) [25] 

Cz (2.17) [251 

(24 (4.2) [251 

C~ (4.2) [25] 

G (4.1) [25] 

C2 (4.1) [25] 

G (2.20) [25] 

£3 (4.2) [251 

Y-,3 (4.2) [25] 

C3 (4.2) [251 

C2 (2.19) [251 

G (4.2) [251 

C2 (2.18) [25] 

D~ (4.2) [251 

D8 (4.2) [25] 

D~ (4.2) [25] 

C~ (4.2) [251 

6"4 (4.2) [25] 

C6 (4.2) [251 

C, (4.2) [25] 

6"3 (2.19) [25] 

A, (4.2) [25] 
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TABLE 1 (contd.) 

G Aa G/S(G) Reference 

4 4 

Hol(25Fzh, C 0 (96,96,32,32, 16 . . . . .  16,6 . . . . .  6) A, (4.2) [25 t 
6 

C~ x, C, (108, 54, 27 . . . . .  27, 6, 4, 4) C, (4.1) [25] 

(C3x CT)x~ (_;~ (126,63,21,21,21,18,18,9,9,6,6,6) C6 (4.2) [25] 
6 

C~x(C~xtQ~ ) (144, 144, t8, 18, 16,16,8 . . . . .  8) Q8 (4.2) I251 
6 

C~xx (C,x~ C4) (144,144, 18,18,16,16,8 . . . . .  8) O. (4.2) [25] 

4 4 

(czZx C7)x~C6 (168,56,28 . . . . .  28,24,8,6 . . . . .  6) C6 (4.2) [25] 
4 

3 C3 x, O8 (216, 108, 27, 27, 27, 24, 12 . . . . .  12, 4, 4) 08 (4.2) [25] 
6 5 

C~7 x t C6 (222, 37, . . . ,  37, 6 . . . . .  6) C~ (4.2) [25} 
5 

~ (240,240, 12 . . . . .  12,10,10, 8, 8, 8) ~, (1.14) 
5 

£~s 2~ (240, 240,12 . . . . .  12,10,10, 8, 8, 8) £, (1.14) 
4 

PSL(2, 7) x C2 (336,336, 16, 16, 14 . . . . .  14,8,8,6,6) {1} (3.2) [25] 

(As x C~)x~ (?2 (360, 180,24, 18, 15, 15, 15, 12, 12,9,6,4) C2 (2.20) [25] 
C~zx~ E~ (384, 128,32,32,32, 16, 16, 16,8,8,8,3) C~zx, E3 (1.14) 
P~.x,~C8 (384,128,32,32,32,16,16,16,8,8,8,3) C~x, C6 (1.14) 
P z x ~ C ~  (384,128,32,24,16,16,16,16,6,6,6,6) C~x~C6 (1.14) 

4 

C~2 x~ A, (960,192, 96,16,16, 12 . . . . .  12, 8, 5, 5) As (4.2) [25] 
S 

C".~xtO~a (1296,81 . . . . .  81, 16,8,8,8,4,4) O~6 (4.5) [25] 
4 4 

C~xt(C,x~C,) (1620,81 . . . . .  81,20,10 . . . . .  10,4,4) C5x~C4 (4.8) [25] 

C~x, Y-.s (1920, 128,48,32,32, 16, 16,8,8,6,6,5) I~, (1.14) 
5 4 

2 C. xtSk(2,3) (2.904, 121,... ,  121,24,6 . . . .  ,6,4) SL(2,3) (4.5)[25] 
6 

C~ xt (Csx, C~) (3240.81,81,40,10,10,8 . . . . .  8) Csx~C, (4.14) [25] 

2 4 4 
PSL(2,19) (34 0,20,19,19,10 . . . . .  10,9 . . . . .  9) 11} (1.13) 

4 

PSL(3, 3) (5616, 54, 48, 13 . . . . .  13, 9, 8, 8, 8, 6) {1} (I.13) 

C~ x~ As (5760, 384, 36, 32, 32,16,12, 9, 8, 8, 5, 5) A6 (1.14) 
3 4 

Z X C,,, tSL(2,5) (43320,361 . . . . .  361,120,10 . . . .  10,6,6,4) SL(2,5) (4.11) [25] 

Mz2 (443520, 384, 36, 32,16,12,11, 11,8, 7, 7, 5) {1 } (1.13) 
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TABLE 2 
(i) The finite groups satisfying r(G) = 13 and/3(G) > 1 

G Ao G/S(G) Reference 

C~ x~,, Dx 

C, x~ 2 D, 

G x ,  O~ 

C~x, C, 

Cgx, (C, ,x,G) 

(40,40,20,.~.,20,4,4) C~ (4.2) [251 

(40,40,20,.~.,20,4,4) C~ (4.2) [251 

(40,40,20,.~.,20,4,4) C~ (4.2) [25] 

(100,50,50,25,.~.,25,20,10,10,4,4) C, (4.2) [25] 

(120,60,60,40,20,20,15,.~.,15,4,4) E3 (4.2) [25] 

(ii) The finite groups satisfying r(G) = 1 3 , / 3 ( G )  = 1 and 0 =< a(G)  <<- 4 

G A~ G/S(G) Reference 

Ci3 

C~x:G 

C~, x: C~ 

C,, x:C~ 

03,. . ' : . . ,  13) 1 (1.16) 

(46, 23,.. ':.., 23, 2) C2 (2.18) 1251 

(93, 31, .'.°., 31,3,3) (73 (2.19) [251 

(148, 37,. ~., 37, 4, 4, 4) 6", (2.20) [25] 

(205, 41,. ~., 41,5,. ~., 5) C~ (4.1) [251 

(iii) The finite groups satisfying r(G) = 13, B (G) = 1, 5 =< a (G)_-< 10 and S(G) solvable 

G A~ G/S(G) Reference 

c~ ×~ z~ 050, 50,.~i, 50,25, 25, lo,.~., 10, 3) 5, (4.2) 1251 

Cz3 ×¢ C~, (253, 23, 23,11 . . . . . . .  11 ) C,, (1.15 ) 

C43×:Cb (258,43,.~. ,43,6,.~.. ,6) Ca (4.2) [25] 

C,3×,C7 (301,43,.~. ,43,7,.~.,7) C7 (4.5) [251 

C3, xf Cw (310, 31,. 3.., 31,10,. ~., 10) C,o (4.14) [251 

C~ x~ M,6 (400, 50.40, 25,16,16,16,10, 8,. '.., 8) Mt~ (1.14) 

C] ×, A, (324, 81,81,54, 27,12, 9,.~. ,9, 6) A, (4.2) [251 

C,, ×:C, (328,41, .~. ,41,8, .~. ,8) C~ (4.8) [251 

C37x,C~ (333,37, .~. ,37,9,.~.,9) C, (4.11) [25] 

C~ x~ M,~ (400, 50, 40, 25,16,16,16,10, 8,. ~.,8) M,, (1.14) 

C~x, (C]×rC,) (576,96,64,36,16,16,12,9,8, f..,8) C~x:C, (1.14) [25] 

C~x~ (C,3xtC 0 (1053,81,81,13,.~., 13,9,.~.,9) C,3x,C~ (1.14) 

C~,×,(Csx~C~) (4840,121, .~., 121,413,10,10, 8, .~., 8) C5x~C8 (4.14)[251 
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TABLE 3 
(i) The finite groups satisfying r(G) = 14 and f l(G) > 2 

O A~ G/S(G)  Reference 

C2 x D~6 

G x S D , 6  

C~ x O,~ 

(C.x G)x.C= 

(C.x G)" C, 

C.x , ,  (7, - 

C.x,~ C, 

C, ~ x~. G 

C~ x~ C= 

C~,. C, 
I 

C~.C, 
2 

(C,x  C~)x,. C~ 

(C, x C~) x ,~ G 

(Ca x c~). C, 

C2 x SL(2, 3) 

C~x~C2 

C~ x~ C~ 

4 ~ 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) D, (1.16) 

4 6 4 

(32 . . . . .  32,16 . . . . .  16, 8 . . . . .  8) D, (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) D,  (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) D.  (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16,8 . . . . .  8) D,  (1.16) 

4 6 4 

(32 . . . . .  32,16 . . . . .  16,8 . . . . .  8) D~ (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) Dr (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) C~ (1.16) 

4 6 4 

(32 . . . . .  32,16 . . . . .  16,8 . . . . .  8) C~ (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) C~ (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16,8 . . . . .  8) C~ (1.16) 

4 6 4 

(32 . . . . .  32,16 . . . . .  16, 8 . . . . .  8) C ~z (1.16) 

4 6 4 

(32 . . . . .  32, 16 . . . . .  16, 8 . . . . .  8) C~ (1.16) 

4 6 4 

(32 . . . . .  32,16 . . . . .  16, 8 . . . . .  8) C~ (1.16) 

4 6 4 

(32 . . . . .  32,16 . . . . .  16,8 . . . . .  8) C~ (1A6) 

4 8 

(48 . . . . .  48, 12 . . . . .  12, 8, 8) A, (1.14) 

12 

(50, 25 . . . . . . .  25, 2) c2 (2.18) [251 
8 5 

(294, 49 . . . . .  49, 6 . . . . .  6) C~, (4.2) [25 t 

(i i) The finite groups satisfying r(G)  = 14,/3 (G)  --< 2 and 0 =< a (G)  ~ 4 

G AG G/S (G)  Reference 

C 1 4  

C,, x,, C,, 

G x ( c , , x r G )  

C~ x (c,~ xl c~) 

6",, xr 6", 

(14,.. '?.. ,  14) 1 (1.16) 

(44, 44, 22,.. 'i ' . . ,  22, 4, 4) C2 (2.19) 1251 

(44,44,22,..'i '.. ,22,4,4) Cz (2.19) [25] 

(78, 78, 26,. ~., 26, 6,. ~., 6) G (4.1) [25] 

(104,41,..'i'.. ,41,4,4,4) 6"4 (2.20) [25] 
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TABLE 3 (contd.) 

(iii) The finite groups satisfying r(G) = 14,/3 (G) < 2, 5 < a (G) _-< 10 and S(G) solvable 

G A~ GIS(G) Reference 

C, x ~ M,+ 

Q x ~  ( C , x ,  C,) 

C,×~ ((C, x Cz)x,  C~) 

Qx(C+x~Q) 

C'~z x.,,t ( C:3 x,, D+ ) 

x,,,:~ ( C, x,, D.) 

CIx~ ( Q x ,  0 . )  

C~3 x, C. 

G x (C,~ x l  C',) 

Q x  (G,xtC~) 

C~x,  (Q  x Q)  

(c~ x C~)x,  DC, 

~ × ,  ( ~ × ~ Q )  

C~ x,., C+ 

C~x~ C, 

C ; x ,  ( Q  x ~ )  

C 4 1  X( C I O  

~ x ~ L  

PxrQ,  PIC~= = C~ 

C~ x, SL(2, 5) 

C~- A~ 

C~, xf (QxfC,)  

C~3 xf  SL(2, 3) 

C~7 xt (SL(2, 3)- (?4) 

s 

(80,80,40,40,20,20,20,16,16,8 . . . . .  8) C.xC2 (1.14) 

5 

(80, 80, 40, 40, 20, 20, 20,16,16, 8 . . . . .  8) C+×C2 (1.14) 

4 5 

(80,80,40,20 . . . . .  20,16,16,8 . . . . .  8) C:,xCz (I.14) 

4 5 

(80,80,40,20 . . . . .  20,16,16,8 . . . . .  8) C, xC2 (1.14) 

Io  

(84,84,14,14,12 . . . . . . .  12) C+ (1.14) 

1o 

(84,84,14,14,12 . . . . . . .  12) C,, (1.14) 
4 ,I 

(96, 96, 48, 32, 32,16,12 . . . . .  12, 8 . . . . .  8) D12 (1.14) 

4 4 

(96.96,48,32,32,16,12 . . . . .  12,8 . . . . .  8) D,2 (1.14) 

4 4 

(96,96,48,32,32, 16,12 . . . . .  12,8,..+ ,8) D12 (t.14) 

6 6 

(104,104, 26 . . . . .  26, 8 . . . . .  8) C+ (4.2) [25] 

6 6 

(104, 104, 26 . . . . .  26, 8 . . . . .  8) C+ (4.2) [25] 

4 

(110,110,22 . . . . .  22, 10 . . . . .  t0) Cs (4.2) [25] 

5 

(200,50,50,40,40,25,25,10,10,8 . . . . .  8) C2x C, (4.8) [25] 
a 

(240,80,60,48,30,16,15,15,8 . . . . .  8,6) DC~ (1.14) 
z ×  (288,96,96,36,36,32,12,12,9,9,8,8,8,8) C3 tCz (1.14) 

s 

(294, 49 . . . . .  49, 6 . . . . .  6) C+ (4.2) [251 
8 

(294, 49 . . . . .  49, 6 . . . . .  6) G, (4.2) [25] 

4 4 

(300, 50 . . . . .  50, 20, 20,10 . . . . .  10,12, 6, 6) D,2 (4.2) [25] 

6 7 

(392, 49 . . . . .  49, 8 . . . . .  8) C, (4.8) [25] 

4 9 

(410,41 . . . . .  41, t0 . . . . .  10) Cm (4.14) [251 

5 

(648,108, 81,54, 24,12 . . . . .  12, 9, 9, 9, 6) ~,  (l.14) 

6 4 

(1280, 256, 256, 32 . . . . .  32, 5 . . . . .  5) C~: ×t C, (l.14) 

4 4 

(1920,1920,128, 128,16 . . . . .  16,10 . . . . .  10, 6, 6) A5 (1.14) 

4 4 

(1920, 320, 192,128,16 . . . . .  16,10 . . . . .  10, 6, 6) A5 (1.14) 
6 

(2420,121 . . . . .  121,20,10,10,10,10,4,4) Csx~C, (4.8) [25] 

7 + 

(4056, 169 . . . . .  169,24,6 . . . . .  6,4) SL(2,3) (4.5) [25] 
6 

(13872,289 . . . . .  289,48,8,8,8,6,6,4)  SL(2,3). C, (4.8) [25] 
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TABLE 4 
(i) The finite groups satisfying r(G) = 15 and/3(G) > 3 

G Ao GtS(G) Reference 

C~ xr C_, 

(C~ x C4x~C2 

C~3xtQ8 

13 

(54, 27 . . . . . . .  27, 2) 6"2 (2.18) [25] 
13 

(54, 27 . . . . . . .  27, 2) Z~ (1.14) 
I0 

(648,81 . . . . . . .  81,8,4,4,4) 08 (4.1) [25] 

(ii) The finite groups satisfying r(G) = 15,/3(G) =< 3 and 0 =< a (G) <-- 4 

G A~ G/S(G) Reference 

C15 

Ca X D,4 

C3, x r G  

(C~x C,,)x, C, 

(PSL(2, 7) x 6"3) x ,  6"2 
(A6 x (73)' C, 

(15,..'~'.., 15) 1 (1.16) 

(42, 42, 42, 21, .~., 21,6, 6,6) 6"2 (2.20) [25] 

(111,37,..'~.. ,37,3,3) (73 (2.19) [251 

(156, 78, 39,. ~., 39,12, 6, 4,4) C4 (4.1) [25] 

(1008,504,48,24,24,21,21,21,18,12,12,9,8,8,6) (72 (1.18) 
(2160,1180,48,48,27,27,27,24,24,15,15,15,8,8,4) Cz (2.20) [251 

(iii) The finite groups satisfying r(G) = 15,/3(G) =< 3, 5 =< a(G) - 10 and S(G) solvable 

C , x  D~ 

C, x O, 

C~ x Z3 

C3 x Hol C~ 

C3 x (C, xfC~) 

C7x, C9 

C3 x E, 

C~ x ~, 1)8 

C~ x ~, 2 08 

C~ x~ Q8 

(24, .~., 24, 12, .~., 12) C~ (1.16) 

(24, .~. ,24, 12, .~., 12) C~ (1.16) 

(30,. 5.., 30, 15,. ~., 15, 10,.~., 10) G (4.2) [25] 

(60, 60, 60, 15, 15, 15, 12,. ~., 12) C, (4.2) [251 

(63, 63, 63, 21, .~., 21, 9,. ~., 9) C3 (4.2) [25] 

(63,63,63,21,.~.,21,9,.~. ,9) C3 (4.2) [25] 

(72, 72, 72, 24, 24, 24, 12, .~., 12,9, 9, 9) ]~, (4.2) [25] 

(72, 72, 36,. ~., 36, 18, 18, 12, .~., 12, 4) C~ (4.2) [25] 

(72, 72, 36, .~., 36,18,18,12, .~., 72,4) C~ (4.2) [25] 

(72, 72, 36,. ~., 36,18,18,12,. ~., 12, 4) C~ (4.2) [25] 

(84,42, .~. ,42, 28, 21,21,21,14,14,14,12,6,4) C~ (4.2) [25] 
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TABLE 4 (contd.) 

G Aa G/S(G) Reference 

5 

C-]3 x~ C~ (108,54,54,54,27 . . . . .  27,12,12,12,6,6,6) C~ (4.2) [25] 

(C3xCT)xAC6 (126,63,42,42,42,21,21,18,18,14,14,9,9,6,6) (?6 (4.2) [25] 
4 6 

C~x~D16 (144,144,36 . . . . .  36,12 . . . . .  12,8,8,8) D8 (4.2) [25] 

4 6 

C32 ×A SD16 (144,144, 36 . . . . .  36,12 . . . . .  12, 8, 8, 8) D8 (4.2) [25] 

4 6 

C~x~Q16 (144,144,36 . . . . .  36,12 . . . . .  12,8,8,8) Ds (4.2) [25] 

6 

C ~ x ~ D s  (216,108,54,54,27,27,24,12 . . . . .  12,6,6) D8 (4.2) [251 
4 

3 C ~ x ^ C s  (216,108,27,27,27,24,24,24,12,12,12,8 . . . . .  8) C8 (1.14) 

6 

(C3x Ct3)x~ C6 (234,117,39 . . . . .  39,18,18,9,9,6,6,6) (?6 (4.2) [251 

5 6 

(Csx C~)x~C8 (360,90,45 . . . . .  45,40,10,8 . . . . .  8) C~ (4.8) [25] 
5 9 

C~t xl C~o (510, 51 . . . . .  51,10 . . . . .  10) C~o (4.10) [25] 

TABLE 5 
(i) The finite groups satisfying r(G) = 16 and fl(G) > 4 

G Ao G/S(G) Reference 

16 

C~2 (16 . . . . . . .  16) 1 (1.16) 
16 

C~ x C, (16 . . . . . . .  16) C: (1.16) 
I 0  4 

C2 x (C~ xt C3 ) (96,96,16 . . . . . . .  16,6 . . . . .  6) C3 (4.1) [25] 

(ii) The finite groups satisfying r(G) = 16,/3(G) =< 4 and 0 --< a (G) ---- 4 

G A~ G/S/(G) Reference 

4 8 4 
2 c2 x D,o (40 . . . . .  40, 20 . . . . .  20, 8 . . . . .  8) C2 (4.1) [25] 

4 8 4 

c2x(Gx.C,) (4o . . . . .  40,20 . . . . .  20,8 . . . . .  8) c2 (4.1) I251 

12 

C,3 x ~ (?4 (52, 52, 26 . . . . . . .  26, 4, 4) (?2 (2.19) [25] 

12 

C2x(C13xfC2) (52,52,26 . . . . . . .  26,4,4) C2 (2.19) [25 i 

14 

C~ xt (?2 (58, 29 . . . . . . .  29, 2) C2 (2.18) [25] 

12 

C~ xl C, (196, 49 . . . . . . .  49, 4, 4, 4) (?4 (2.20) [25] 
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TABLE 5 (contd.) 

(iii) The finite groups satisfying r(G) = 16 , /3 (G)  =< 4, 5 - a(G) < 10 and S(G) solvable 

G Ao G/S(G) Reference 

C4 x Djo 

D~o x Dio 

(C~x C~)x, C6 

C2 x (C,7 xr C, ) 

C,,x~ C, 

G x (C,3 xrG) 

C~sx, C~2 

G x ( ~ x r C s )  

(C~ x C,~)x^ G 

G, x: C6 

G x (C~xr O,) 

C~x, (C, x, C,) 

~x~C.  

C2 x (C~ xt DC3) 

C~x, (C~x~ C~) 

C~ x¢ C,, 

~x,,(CTx~G) 

C]~ xt DC3 

(C] x C~)x, SL(2,3) 

C,~ x~ (C, x, C,) 

C~ xr SL(2, 5) 

(40, .~. ,40, 20,. ~., 20, 8, .~. ,8) C~ (1.14) 

(100, 50, .~., 50, 25, .~., 25, 20, 20,10, .~., 10,4) C~ (4.2) [251 

(120, 60, 60, 4.0, 30, 30, 24, 20, 20,15,. ~., 15, 8, 6, 6) C6 (1.14) 

(136,136, 34,. ~., 34, 8,. ~., 8) 6"4 (4.2) [25] 

(136, 136,34,.~.,34,8,.~., 8) C, (4.2) [251 

(156,156, 26,. ~., 26, 6,..'i'.., 6) Ca (1.14) 

(156, 156,26, .~., 26,6,..'i'.. ,6) C,, (1.14) 

(160,160, 32,.~., 32,10,.~., 10) C~ (4.2) [25] 

(312,104, 52,. ~., 52, 24, 8, 6, 6,6,6) Ca (4.2) [25] 

(366, 61,..'i'.., 61,6,. ~.., 6) C6 (4.2) [25] 

(400,400,50, .~. ,50, 16, 16,8,.~. ,8) On (4.2) [25] 

(400, 400, 50, .~., 50,16,16, 8, .~., 8) OH (4.2) [25] 

(576, 64,. ~., 64, 9,. ~., 9) C,, (4.2) [25] 

(600,600, 50, .~., 50, 24,24,12, .~., 12, 8, .~., 8) DC~ (1.14) 

(600,600, 50,. ~., 50,24, 24, 12, .~., 12, 8,. ~., 8) DC~ (1.14) 

(610,61, .~. ,61, 10, .~., I0) C,, (4.14) [25] 

(1344, 192, 192,192, 64,64, 12,. ~., 12, 7, 7) CTxtC3 (1.14) 

(1344, 192, 192,192, 64, 64, 12,. ~., 12, 7, 7) C7x:C3 (1.14) 

(1452,121,..'i'.., 121,12,6,6,4,4) DC3 (4.2) [251 

(2400, 800, 100,. ~., 100,96, 32, 16, .~., 16,6, .~., 6) SL(2,3) (1.14) 

(4732, 169, .~., 169,28, 14, .~., 14,4,4) CTx, C, (4.14) [25] 

(100920,841, .~. ,841,120, 10, .~., 10,6,6,4) SL(2,5) (4.11) [25] 
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TABLE 6 
(i) The finite groups satisfying r(G) = 17 and/3(G) > 5 

® 

(ii) The finite groups satisfying r(G) = 17, fl(G) -< 5 and 0 -< a (G) -< 4 

G A~ G/S(G) Reference 

17 

C~ (17 . . . . . . .  17) 1 (1.16) 

15 

C3, xt (?2 (62, 31 . . . . . . .  31,2) Cz (2.18) [251 

14 

C,3 x/C3 (129, 43 . . . . . . .  43, 3, 3) C3 (2.19) [25] 
12 

C~, xf C~ (305, 61 . . . . . . .  61, 5, 5, 5, 5) C5 (4.1) [25] 

5 

(A, xCs)x.C2 (600,300,300,40,30,25 . . . . .  25,20,20,15,15,12,6,4) C2 (2.20) [25] 

(iii) The finite groups satisfying r(G) = 17,/3(G) -< 5, 5 -< a(G) <= 10 and S(G) solvable 

G A~ G/S(G) Reference 

13 

C7 ×~, D, (56, 56, 28 . . . . . . .  28, 4, 4) C~ (4.2) [25] 
13 

C7 x~2 D8 (56, 56, 28 . . . . . . .  28, 4, 4) C~ (4.2) [25] 
13 

C7 x~ Q. (56, 56, 28 . . . . . . .  28, 4, 4) C~ (4.2) [25] 

7 

(CTx C~)x~C4 (140,70,70,70,35 . . . . .  35,28,14, 14,14,4,4) (7, (4.2) [25] 
7 

C~x, (C2, xrC2 ) (168,84,84,84,56,28,28,28,21 . . . . .  21,4,4) ~ (4.2) [25] 

5 4 

(CsxC7)x~C~ (210,105,105,35 . . . . .  35,30,30, 15 . . . . .  15,6,6,6) C~ (4.2) [25] 

7 
2 C7 x~ C~ (294,147, 147, 49 . . . . .  49, 42,14, 14, 6, 6, 6, 6) C~ (4.2) [251 

I I  5 

C67 xt Ca (402, 67 . . . . . . .  67, 6 . . . . .  6) C~ (4.2) [25] 
I(I 6, 

C7, xf C7 (497, 71 . . . . . . .  71,7 . . . . .  7) 6"7 (4.5) [25] 

9 7 

C73 xt C~ (584, 73 . . . . .  73, 8 . . . . .  8) C~ (4.8) [25] 
8 

C73xfC9 (657,73 . . . . .  73,9 . . . . .  9) C9 (4.11) [25] 
7 9 

C,~ x~C~o (710,71 . . . . .  71,10 . . . . .  10) C~o (4.14) [25] 

6 IO 

C67x~C,, (737,67 . . . .  ,67,11 . . . . . . .  11) C,, (1.15) 

8 4 

C~, xr SL(2,5 ) (115320,961 . . . . .  961,120,10 . . . . .  10,6,6,4) SL(2, 5) (4.11) [25] 
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TABLE 7 
(i) The finite groups satisfying r(G) = 18 and/3(G) > 6 

G Ac G/S(G) Reference 

I 0  7 

C-~3x:C~, (648, 81 . . . . . . .  81,8 . . . . .  8) C8 (4.8) [251 

(ii) The finite groups satisfying r(G) = 18,/3 (G) _<- 6 and 0 <= a (G) _--- 4 

G A~ G/S(G) Reference 

c~ x c]  (18,..'.~., 18) 1 (1.16) 

C,x(C]xtG ) (54, 54, 54~27,..'~.., 27, 6, 6,6) C2 (2.20) [25] 

(C~xCQx, C, (60, 60, 30,..'?.., 30, 4, 4) (?2 (2.19) [25] 

C2x((C~x C~)x¢C2) (60,60,30,..'.*..,30,4,4) Cz (2.19) [25] 

(C~x C,,)x,G (66,33,. [ . .  ,33,2) C~ (2.18) [25] 

C~x(C,,x¢C3) (114,114, 38,..'~.., 38, 6, 6,6, 6) C3 (4.1) [25] 

(C3 x C,0x,  6"4 (204,102,51,. ):.. ,51,12,6,4,4) 6", (4.1) [25] 

(iii) The finite groups satisfying r(G) = 18,/3(G) =< 6, 5 =< a (G) <= 10 and S(G) solvable 

G AG G/S(G) Reference 

C,×E~ (36,.~.,36,18,.~., 18,12,.~., 12) (?2 (4.2) [25] 

C3 × DC3 (36, .~. ,36,18, .~., 18, 12, .~., 12) C2 (4.2) [25] 

C2×(C~× ,̂D8) (48, .~., 48, 24,..'i'.., 24, 8,. ~., 8) C 2 (1.14) 

G×(Cax~2Ds) (48,. ~., 48,24,..'i'.., 24, 8,. ~., 8) C22 (1.14) 

Gx(C,×AO8) (48, .~., 48, 24,. ).°.., 24, 8,. ~., 8) C~ (1.14) 

C,×,((C,,xC2)x, C2) (48,. ~., 48, 24,..'~'.., 24, 8, .~., 8) C2 z (1.14) 

(C3xC4xC2)x~C2 (48,. ~., 48, 24,..'.°.., 24, 8,. ~., 8) C~ (1.14) 

C3x, (C4x~ C4) (48,.~.,48,24,./?..,24,8,.~.,8) C~ (1.14) 

C,2x~ C4 (48, .~. ,48, 24,..'i'.., 24, 8, .~. ,8) C 2 (1.14) 

C~x~(C2xC,) (72, 72, 36, .~., 36, 24, .~. ,24,18,18,12,.~., 12, 8, 8) C2xC, (1.14) 

C2xE~xE3 (72,72, 36,. ~., 36,24,. ~., 24, 18, 18,12,. ~., 12, 8,8) (722 (1.14) 
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TABLE 7 (contd.) 

G A~ GtS(G) Reference 

C,x(C]xrC,) 

C~ x, C~ 

(C, x Q)x ,  C~ 

Q x ( ( Q x  Q)x~ C,) 

Q x (C~ x, D..) 

C~ x (C~x, (C~ x~Q)) 

(G x C])x~ C, 

Q x(C,~x:C~) 

C19x~ C~2 

~ x ,  (C~x:Q) 

~ x ~  (C~xlQ) 

(C~ × C,O ×, C~ 

(Q x C~)x~ (C, x Q) 

(Q x C~)x, 0. 

(Q x C,~) x, C. 

C,3 x ~ C, 

( C3 x ¢L~2) x~ D,o 

(G x C~)x, O~ 

~x,~ C. 

~x~C~o 

C~x, (Gx ,  G) 

( C 3 x  C~)xx D C 3  

(C~ x C~)x,, DQ 

×~, SD,6 

C~3 x,,2 SD,6 

6 q 

(108, 108, 108, 27 . . . . .  27, 12 . . . . .  12) C,, (4.2) [25] 

5 4 4 

(108, 54 . . . . .  54, 36, 27 . . . . .  27, 18 . . . . .  18,12, 6, 4) C~ (4.2) [25] 

6 4 

(120,120,60,60,30 . . . . .  30,24,24,12,12,8 . . . . .  8) (7, (4.2) [25] 
6 ,I 

(120,120,60,60,30 . . . . .  30,24,24,12,12,8 . . . . .  8) C4 (4.2) [25] 

6 4 

(144, 144,72,72,48,48,24,24, 18 . . . . .  18,8 . . . .  ,8) Z3 (1.14) 

6 4 

(144, 144, 72, 72, 48, 48, 24, 24, 18 . . . . .  18, 8 . . . . .  8) Z3 (1.14) 

I0 

(180,90,90,45 . . . . . . .  45,20, 10, 10,4,4) C, (4.2) [25] 

6 I0 

(228, 228, 38 . . . . .  38, 6 . . . . . . .  6) C~ (1.14) 

6 Ill 
(228,228,38 . . . . .  38,6 . . . . . . .  6) Ca (1.14) 

6 4 

(228, 144,96,96,96,48 . . . . .  48,9,9,9,8 . . . . .  8) Z~ (4.2) [25] 

6 4 

(228,144,96,96,96,48 . . . . .  48,9,9,9,8 . . . . .  8) ]£~ (4.2) [25] 

9 

(342, 171, 57 . . . . .  57, 18, 18, 9, 9, 6, 6, 6) C~ (4.2) [251 

4 5 

(360,90,90,90,72,45 . . . . .  45,40,18,18,10,8, . . . ,8)  C2x (74 (1.14) 

5 7 

(360,180,180,45 . . . . .  45,40,20 . . . . .  20,4,4) O8 (l.14) 

6 4 

(408,204,51 . . . . .  51,24,24,24,12,12,12,8, . . . ,8)  C, (1.14) 

12 5 

(438,73 . . . . . . .  73,6 . . . . .  6) C6 (4.2) [25] 

6 4 

(480,240,96,96,96,48,48,48, 15, . . . ,  15,8, . . .  ,8) D.~ (1.14) 

(600,300, 75 . . . . .  75, 24,12 . . . . .  12, 4, 4) Q, (4.2) [25] 

I0 7 

(648, 81 . . . . . . .  81, 8 . . . . .  8) (7, (4.8) [251 

g 9 

(810,81 . . . . .  81,10 . . . . .  10) C,o (4.14) [25 

8 7 

(900,450,75 . . . . .  75,36,18 . . . . .  18,4,4) DC3 (1.14) 

8 7 

(900,450,75 . . . . .  75,36,18 . . . . .  18,4,4) DE3 (1.14) 

8 4 

0200,400,100 . . . . .  100,48,16,8 . . . . .  8,6,6) DC3 (1.14) 

4 4 

(1296, 162 . . . . .  162,81,81,81,36, 18, . . . ,  18, 16,8,8,8,4) SD~6 (1.14) 

4 4 

(1296,162 . . . . .  162,81,81,81,36,18, . . . ,18,16,8,8,8,4)  SD16 (1.14) 
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TABLE 8 
(i) The finite groups satisfying r(G) = 19 and/3(G) > 7 

G Ac G/S(G) Reference 

16 

C~ x t, C3 (147, 49 . . . . . . .  49, 3, 3) C3 (2.19) [25] 

(ii) The finite groups satisfying r(G) = 19,/3(G) =< 7 and 0 =< a(G) <= 4 

G A~ G/S(G) Reference 

19 

C,~ (19 . . . . . . .  19) 1 (1.16) 

17 

(C5 x C,) xt C2 (70, 35 . . . . . . .  35, 2) C2 (2.18) [25] 

16 

C~ x~ C3 (147, 49 . . . . . . .  49, 3, 3) C3 (2.19) [25] 

I 6  
2 C, x~ C3 (147, 49 . . . . . . .  49, 3, 3) C3 (2.19) [25] 

15 

C6, xt C4 (244, 61 . . . . . . .  61,4, 4, 4) C4 (2.20) [25] 

14 

C7l xfC5 (355,71 . . . . . . .  71,5,5,5,5) C5 (4.1) [251 

(iii) The finite groups satisfying r(G) = 19,/3 (G) =< 7, 5 =< a (G) _<- 10 and S(G) solvable 

G A~ G/S(G) Reference 

13 5 

C79 Xf C6 (474, 79 . . . . . . .  79, 6 . . . . .  6) C6 (4.2) [25] 

11 7 

C89 ×t C8 (712, 89 . . . . . . .  89, 8 . . . . .  8) C~ (4.8) [25] 
8 10 

C89 x:  C .  (979, 89 . . . . .  89,11 . . . . . . .  11) C,. (1.15) 

I o  

C~x~ DC3 (1500,375, 125 . . . . . . .  125,30,15, 15, 12,6,4,4) DC3 (4.2) [25] 

9 
C 2 ( 3x C~)x, SL(2,3) (5400,675,225 . . . . .  225,24,18,18,9,9,6,6,4) SL(2,3) (4.5) [25] 

12 

C~7 x: SL(2,3) (6936,289 . . . . . . .  289,24,6,6,6,6,4) SL(2, 3) (4.5) [25] 

9 6 

C~9x:(CsxACs) (14440,361 . . . . .  361,40,10,10,8 . . . . .  8) C~x, C8 (4.14) [251 
I I  

C~3x~ (SL(2,3). (?4) (25392,529 . . . . . . .  529,48,8,8,8,6,6,4) SL(2,3)- (?4 (4.8) [25] 
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TABLE 9 
(i) The finite groups satisfying r(G) = 20 and fl(G) > 8 

¢o 

(ii) The finite groups satisfying r (G)  = 20, ~ (G)  =< 8 and 0 =< a (G)  =< 4 

G AG G/S(G) Reference 

4 12 4 

C~ x D, ,  (56 . . . . .  56, 28 . . . . . . .  28, 8 . . . . .  8) C2 (4.1) [25] 

4 12 4 

C2 x (C7 x~ C,) (56 . . . . .  56, 28 . . . . . . .  28, 8 . . . . .  8) (72 (4.1) [25] 

16 

Ct, x~ C4 (68, 68, 34 . . . . . . .  34, 4, 4) C2 (2.19) [25] 

16 

Qx(C, ,xrC2)  (68,68,34 . . . . . . .  34,4,4) C2 (2.19) [25] 

18 

C37 xr C2 (74, 37 . . . . . . .  37, 2) C2 (2.18) [25] 

17 

(C'z 7 x Ct3)xtC3 (156,52 . . . . . . .  52,3,3) C~ (2.19) [25] 

16 

( Q  x Ct3)xt C4 (260,65 . . . . . . .  65,4,4 ,4)  C4 (2.20) [25] 

15 

C~ x t Os (968,121 . . . . . . .  121, 8, 4, 4, 4) O~ (4.1) [25] 

(iii) The finite groups satisfying r(G) = 20 , /3 (G)  _-< 8, 5 =< a(G) <-_ 10 and S(G) solvable 

G A~ G/S(G) Reference 

C~xQ 

G x D~o 

Q X A ,  

Dto x Dt4 

C~2 x~ D~2 

C~2 x~ DC3 

C2 x ( C~xrC.) 

C~ x. C8 

C~ x. X~ 

Qx(C~xiCO 

C~x~ C,~ 

20 

(20 . . . . . . .  20) 1 (1.16) 

5 10 5 

(50 . . . . .  50, 25 . . . . . . .  25,10 . . . . .  10) Cz (4.2) [25] 

5 5 10 

(60 . . . . .  60, 20 . . . . .  20,15 . . . . . . .  15) c3 (4.2) 1251 

5 6 

(140,70 . . . . .  70,35 . . . . .  35,28,20,14,14,14,10,10,4)  Cz z (4.2) [25] 

6 8 

(192, 192, 64 . . . . .  64, 32, 32, 16 . . . . .  16, 6, 6) 5`3 (1.14) 

6 8 

(192, 192, 64 . . . . .  64, 32, 32, 16 . . . . .  16, 6, 6) 5"3 (1.14) 

12 6 

(200, 200, 50 . . . . . . .  50, 8 . . . . .  8) C, (4.2) [25] 

12 6 

(200, 200, 50 . . . . . . .  50, 8 . . . . .  8) Ca (4.2) [25] 

6 5 7 

(294, 98 . . . . . .  98, 49 . . . . .  49, 14 . . . . .  14, 3) .X3 (4.2) [25] 

8 I0  

(300, 300, 50 . . . . .  50, 12 . . . . . . .  12) Q (1.14) 

8 t0  

(300, 300, 50 . . . . .  50, 12 . . . . . . .  12) (76 (1.14) 
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TABLE 9 (contd.) 

G A~ G/S(G) Reference 

C~x~D, 

( C~ x C,O x ~ Co 

(C,x C,,)x~ C, 

Co~ x r C, 

C~o~ Xt C~o 

C2 x (C~ xl DC~) 

c~x~ (c~x~ C~) 

c ~  xr DC~ 

(C~ × C~)x~ SL(2,3) 

6 6 

(392, 98 . . . . .  98, 49, 49, 49, 28, 28, 14 . . . . .  14, 8, 4) D, (1.14) 
12 

(456, 152, 76 . . . . . . .  76, 24, 8, 6, 6, 6, 6) C6 (4.2) [25] 
IO 6 

(680, 170, 85 . . . . . . .  85, 40, 10, 8 . . . . .  8) C, (4.8/[25] 
12 7 

(776, 97 . . . . . . .  97, 8 . . . . .  8) C~ (4.8) [25] 
I0  9 

(1010,101 . . . . . . .  101,10 . . . . .  10) C.o (4.14) [25] 

8 4 4 

(1176,1176,98 . . . . .  98,24,24,12 . . . . .  12,8 . . . . .  8) DC3 (1.14) 

8 4 4 

(1176, 1176, 98 . . . . .  98, 24, 24, 12 . . . . .  12, 8 . . . . .  8) DC3 (1.14) 
14 

(2028, 169 . . . . . . .  169, 12, 6, 6, 4, 4) DC3 (4.2) [25] 
8 a 4 

(4704, 1568, 196 . . . . .  196, 96, 32, 16 . . . . .  16, 6 . . . . .  6) SL(2, 3) (1.14) 

REMARK. In  [25] Tab le  3, T h e  fo l lowing  g r o u p  is missing:  

G Ac G/S(G) 

5 4 

Hol(2~F~a~, C3) (96, 96,16 . . . . .  16, 6 . . . . .  6) C~2 x/(73 

2. Preliminaries 

W e  will o f t e n  use the  p re l imina ry  l e m m a s  of  [25]. A l s o  we  util ize the  fo l lowing  

l emmas :  

LEMMA 1.1. L e t N b e  a n o r m a l s u b g r o u p o f G s u c h  t h a t G  = N×A T. Then:  

(1) r e ( T ) =  r (T ) ,  

(2) ro (nT)>=r(T )  for each n E N .  

PROOF. (1) Set  T =  ~=,CIT(hl).  W e  have  U ~ T  g = U~=,Cl~(h~) ,  an d  if 

hi is c o n j u g a t e  to hj in G, then  the re  exists nh E N T  such tha t  h~'h= hi, wi th  

n E N and  h E T, t h e r e f o r e  h ~' h ~-' = h ~' h '~ = [ h~, n ] ~ N N T = l ,  i.e. 

CIT(h~) = CIT(hj)  and  i = j. T h u s  r e ( T )  = r(T)~ 

(2) This  resul t  is an  i m m e d i a t e  c o n s e q u e n c e  of  the  fact  tha t  n h ~ o n ' h ' ,  

n , n ' E N ,  h , h ' E  T, implies  h - T h ' .  
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LEMMA 1.2. If T is a nilpotent S~-subgroup of g, then G has a normal 
7r-complement if and only if to (T)  = r(T). In particular, if ~r ={p} and P is a 
Sylow p-subgroup of G, then G has a normal p-complement iff re (P) = r(P). 

PROOF. The non-trivial implication follows from [8] corollary 12.5 (p. 102). 

LEMMA 1.3. Let P be a Sylow p-subgroup of G. Then we have the following 
affirmations: 

(1) re (Co (P)) = rN~tp)(C~ (P)). 
(2) [Clo(c)[ = up(G).[CIN~(~)(x)[.(1/[Co(x): CNo~P~(X)[) for each x 

No(P). 
(3) If  P is abelian, No (P) = P ×~ T and Co (P) = P × T1 with 7"1 <-- T, then we 

have Ti ~_ No (P) and 

rN~cP)(Co (P)) = rr~a(p)(T*) + rNo(e)(P) + rNa(p)(P*)" rNa(p)(T*). 

Furthermore, if P ~ Z(No  (P)), then re(No(P)) = r(No (P)) = 1PI" r(T). 

PROOF. These results are immediate consequences of a well-known theorem 

of Burnside (of. [7] Theorem 1.1, p. 240). 

REMARK. When P is an abelian group, the analysis of A~oo,) is developed 

using Lemma 2.11 of [25]. 

LEMMA 1.4. Let G be a group whose elements have primary power orders. Let 
I G I = P~ . . . .  p~' be the decomposition in primes factors of the order of G, with 
p,~ p~ for each i~  j, and let P~ be a Sylow pi-subgroup of G for every i = 1 . . . . .  t. 
Then G has exactly (I Z(P~)I - 1)/(t No (P,)/P, I) conjugacy classes of cardinality 
I G/P~ I for each i = 1 . . . . .  t. In particular, if the Sylow subgroups P, are abelian, 
then 

t 

r(G) = 1 + ~= ( IZ(P~) [ -  1)/(INo(P,)/P~ [). 

PROOF. Let P E S y l p ( G ) .  The condition that G does not have elements 

non-divisible by two primes numbers order implies that Co (P) is a p-subgroup 

of G and that if No ( P ) =  P x~ T, then T acts f.p.f, over P, that is, No ( P ) =  

P x r T. Since Co ( P ) ~  No (P) and No (P) is a Frobenius group of kernel P, it 

follows that either C~(P)<= P or P < Co(P) ,  consequently Co(P)  = Z(P).  
Moreover,  for each x E Z(P)*, we have IClN~¢e,(x)l = I x r t  = [TI, so 

ro(Z(P)) : ro(Co(e)) = r~o,e)(co(e)) = 1 + ( I / ( e ) l  - 1)/]No(P)/PI, 

but Clo(y)t-I Z ( P ) * ~  ~ iff Pg--< C~(y)  for some g ~ G, that is, if I Co(y)l = 
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P" = [PI. Therefore ra(Z(P))-  1 = ( i Z ( P ) I -  1)/(iNa(P)/Pi) is the number of 
conjugacy classes of elements of G whose cardinality is I G I/pL 

EXAMPLES. (1) By observing the orders of elements of As, it is immediate that 

NA,(Cs)-~ D~0, NA,(C3)~-E3 and NA,(C~)= 34. Then, if IPL I = 5, I P21 = 3 and 

I P3[ -- 4, we have 

r(As) = 1 + (5 - 1)/(5.2/5) + (3 - 1)/(3.2/3) + (4 - 1)/(4.3/4) 

=5 .  

(2) Set G =PSL(2,7) .  Then we have N6(C7) = CTXIC3, N6(C3)=E3 and 

Na (D8) -~ D8, so G has 
( 7 -  1)/(7.3/7)= 2 conjugacy classes of cardinality 168/7 = 24, 

(2 - 1)/(8/8) = 1 conjugacy classes of cardinality 168/8 = 21, 

(3 - 1)/(6/3) = 1 conjugacy classes of cardinality 168/3 = 56. 

(3) Consider the group G = C~x~A5 with A5 acting transitively over C~. 

Then Na (C5) -~ Dlo, Na (C3) = E3 and if P is a Sylow 2-subgroup of G, then we 

have N~(P)=PxAC3= C~x~A4. Thus G has 

( 5 -  1)/(5.2/5)= 2 conjugacy classes of cardinality I G I/5, 

(3-1) / (6 /3)  = 1 conjugacy classes of cardinality [G I/3, 
( 4 -  1)/(26.3/26) = 1 conjugacy classes of cardinality [G I/26. 

Assume the hypothesis of Lemma 1.4; in general, non-abelian Sylow sub- 

groups can exist. Now if x ~ G* and o(x)= p', with p prime, then Ca(x) is a 

p-group, so there exists P E S y l p ( G ) s u c h  that Ca(x)<-P. Consequently 

ICa(x)l =lCe(x ) l  and ]Cla(x)l  = I C l p ( x ) l ' l G / P I ,  that is, the cardinal of a 

conjugacy class of G which is different from I G/PI depends only on Ae. Thus, 

the possible values of the tuple Ao are bounded if we know previously Ap, when 
P is any Sylow subgroup of G. In general, we will write 

r(G) = 1 + ~ r6(Z(P~)*)+ ~ r*(P~ - Z(P~)) 
i = l  i = l  

in which we define r~(P~ - Z(P,))  = r~(P~ - Z(P~))-/~p, with 

/~ p, = l{ Cla (g)l Cla (g) n z(P~) # O = Cla (g) n (P, - z(P,))}I,  

that is, 

t ! 

r (G)  = 1 + ~ ([ Z(P~ )l - 1)/(I N~ (P~)/Pi [) + ~'. F*(P~ - Z(P~ )). 
i ~ l  i = l  

Naturally ro (Pi - Z(P~ )) <= r r,(P~ - Z(P~ )). 
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EXAMPLES. (1) Consider the group G = PSL(2,7). Let P = D8 a Sylow 

2-subgroup of G. Then Ae = (8, 8, 4, 4, 4), so A°~_ztos)= (4, 4, 4) and we have 

168 = 1 + 168/8 + 168/7 + 168/3 + 2 7"3"8/2m' with 2 m' = 4 
i = 1  

for each i, consequently s = 1 and ApsES2,7) = (168, 8, 7, 7, 4, 3). 

(2) Consider the group G = M9 = PGL*(2, 9), which is the unique extension 

of PSL(2, 9) by C2 with a 2-Sylow of the type SD16. We have 

N~(Cs)--Cs×IC4,  NM~(C~)~-C23×IQ8 and N~o(SD~6)--SD16, 

therefore M9 has a unique conjugacy class of elements of order 5, a unique 

conjugacy class of elements of order 3 and a unique conjugacy class of elements 

of order 2 that are central in a 2-Sylow of Mg. We have 

A~',~-z(so,6) = (8, 8, 8, 4), 

so we consider the equations: 

720 = 1 + 720/16 + 720/9 + 720/5 + 9.5-2. h + 9.5-4. t2, 

(1) r(G) = 4 + h + t2. 

(1) implies 5 = t ,+2tz,  hence (h, h)~{(1,2) , (3 ,  1)} and the cardinals of the 

centralizers of the elements of these possible classes are (8, 4, 4) and (8, 8, 8, 4), 

being r(G) = 7 or 8, respectively. On the other hand, AA~ = (360, 9, 9, 8, 5, 5, 4), 

hence r(Mg)= 2.s + ( 7 -  s)/2 with s -> 3 (cf. [25] Lemma 2.9), therefore r(Mg)_-> 

8 and necessarily r(Mg)= 8. Thus 

A ~  = ((720, 16, 9, 5), (8, 8, 8, 4)) = (720, 16, 9, 8, 8, 8, 5, 4). 

= C2x~As (3) Let us consider the group G 4 with As acting transitively over 

Ap_z(p) (16, ,s C 42, let P ~ SyI2(G), then P = . . . ,  16). Now observing the equations 

16- 60 = 1 + 960/5 + 960/5 + 960/3 + 960/26 + (960/16). t 

and 

r(G)=5+t, 

it follows that t. = 4 and Ac = (960, 64, 16, 16, 16, 16, 5, 5, 3). 

LEMMA 1.5. Set G = PFL(2, 9). Then we have 

A~ = (1440, 48, 40, 32, 18, 16, 16, 10, 10, 8, 8, 8, 6). 

r ( G ) =  13, / 3 (G)=  1, G / S ( G ) =  C 2, S(G)~-A6 and a ( G ) = 8 .  
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PROOF. We know that G/A6~-C] and that G has exactly three normal 

subgroups of index 2: N , -  E6, N2-~ PGL(2, 9) and N~-~ Mg. Besides 

AN, = (720, 48, 48, 18, 18, 16, 8, 8, 6, 6, 5), 

AN2 = (720, 20, 16, 10, 10, 10, 10, 9, 8, 8, 8), 

AN3 = (720, 16, 9, 8, 8, 8, 5, 4). 

Obviously, r(G) = ra(S(G))+ ra (S~-  S (G) )+  ra(N2-  S (G) )+  ra(N3-  S(G))  

and we have r(G)=2s ,  +(r(N~)-si)/2,  where si is the number of conjugacy 
classes of N~ fixed by the automorphism ~b~ : N~ ~ N~ defined by ~b~ (x) = x ~' for 
each x ENd, with g, an element of G such that g = N~(g~). 

NI 
We have NI = S(NI)U (N~-  S(N~)), AstN,l= (720,18,18,16,8,5) and 

A~',_s~N,~ = (48, 48, 8, 6, 6), so s~ => 5 and r(G) ~ {13, 16, 19, 22}. In [16] it is proved 

that s~ = 5 and now it is immediate to conclude that Aastal = (1440, 32, 19, 16, 10), 
G AN,-sta~ = (48, 16, 6), A a N2-sta~ -- -- (8, 8) and A a N3-sta~ = (40, 10, 8). Thus we obtain 

Aa=(1440,48,40,32,18,16,16,10,10,8,8,8,6)  and a ( G ) = 1 3 - 5 = 8 .  

LEMMA 1.6. (1) If G is a group such that PSL(3, 4) <1G _-< Aut(PSL(3, 4)), then 
r(G) >= 14. 

(2) ApGL~2,,,~ = (20160,24,20, 12,. 5.., 12, 11, 10, .4.., 10), r(PGL(2, 11)) = 13 and 

a ( G ) = 6 .  

PROOF. These results rely on simple matrix calculations and using the tuples 

ApsL<3.4) = (20160,64, 16, 16, 16, 9, 7, 7, 5, 5), Apses2,,)= (660, 12, 11, 11,6,6,5,5) and 
Lemma 2.9(iii) and (iv) from [25]. 

Let F be the family of all finite nilpotent groups. We define 4'H = qb,~ f3 F. 

LEMMA 1.7. 
~ ,  = 25F, tO {25F3a, ] 1 =< i < 3} t0 {25F3c, 11 _-< i =< 2} U {2SF3d, I 1 -< i =< 2}. 

PROOF. Cf. [24]. 

In Lemmas 2.18, 2.19 and 2.20 from [25], all finite groups satisfying 1 < 

a ( G ) < 3  are classified. In Lemma 4.1 from [25], we obtain the finite groups 

satisfying a ( G ) =  4 and with S(G)  solvable. In the following, we will obtain all 
finite groups satisfying a(  G) = 4. 

LEMMA 1.8. Let G be a finite group with S (G)  non-solvable and satisfying 

a ( G ) = 4 .  Then either G = P G L ( 2 , 7 )  or G = ( P S L ( 2 , 7 ) x H ) x x C 2  with 

PSL(2, 7)C2 = PGL(2, 7) and H x~ C2 = H x t Cz, being r( G ) = 6 + 31 HI.  
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PROOF. We have r(G/S(G))<-5. If r (G/S (G) )=5=a(G)+I ,  then 

ICe (x)l = I C~ (£)t for each x ~ G - S(G) and S(G)is solvable by Lemma 2.3 

from [25], that is impossible. 

If r(G/S(G))= 4, then G/S(G) is isomorphic to one of the groups C4, C~, 

D,o, and A4. 

Suppose G/S(G) = t~ = (~i) -~ C4. Then 

a(G) = 4 = r6(aS(G))+ re(a-~S(G))+ re(a2S(G)) 

forces that re (aS(G))= 1, hence Ce(a)= (a) is isomorphic to C4 and S(G) is 

solvable, impossible. 

Suppose t~ = (~1) x (a2) ~ C~. Then 

4 -- re (a, S(G)) + re (a2S(G)) + re (a, a2S(G)) 

implies that re (aS(G)) = 1 for some a ~ {al, a2, a,a2}, hence ICe (a)[ = 4 and if 

P is a 2-Sylow subgroup of G, then there is (b) ~ P such that P/(b) ~- C2. We 

have 0 ( 6 ) =  2. hence b 'E  S(G) and S(G) has cyclic Sylow's 2-subgroups, so 

S(G) is solvable, impossible. 

Assume (~ = (t])x r (b) = D,0. Then 

4 = re(aS(G))+ r~(a2S(G))+ re(bS(G)) 

and we have rc (aS(G)) = 1, so Cc (a) = (a) =-- (?5 acts f.p.f, over S(G), therefore 

S(G) is solvable, impossible. 

If t~ = (&, &) x r (/~) = A4, then re (bS(G)) = 1, hence Cc (b) - (?3 and S(G) is 

solvable impossible. Thus r((~)-<_ 3 and (~ is isomorphic to one of the following 

groups: E3, C3, or C:. 
If then 4=ra(aS(G))+r~(bS(G)) and S(G) non- 

solvable implies re (aS(G)) = 2 = re (bS(G)), hence ICe (b)l = 4 and again S(G) 
has cyclic 2-Sylow, that is impossible. 

If G = ( /~)-  (73, then re (bS(G))= 2 and Ab = (6,6), hence Lemma 2.13(ii) 

from [25] implies that S(G) is solvable. 

Thus we conclude that G/S(G) is isomorphic to C2. If there exists g E G - 

S(G) such that o(g) = 2" and ICe (g)l = 2" • rn with n < 3, then G has sectional 

range at most 4 and necessarily either G =PSL(2,7)  or G = 

(PSL(2, 7 )x  H)xx  G (cf. [18]). Assume that G has sectional range greater than 

or equal to 5, and let g be a 2-element in G -  S(G). Now, we consider the 

equation: 

1/2 = 1/2A, + 1/2M + 1/2A3 + 1/2A, with A 8 = (2A, . . . . .  2A,). 
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If 2A~ => 8, then A~_s~o) = (8, 8, 8, 8), impossible, hence 2A4 = 6. If 2h3 ~ 12, then 

1/2 =< 1/6+3/12, impossible too, hence 2A3 ----- 6 and Ag = (24,8,6,6) or 

(12, 12,6,6), therefore I C~(g)I = 2  "" m with n _-<3, which is impossible. 

REMARKS. (1) If A is a non-abelian simple normal subgroup of G and 

suppose that G = ( A × H ) × ~ C 2 = ( A x H ) × ~ ( b )  with HC2=H×rC2 and 

A C 2 ~  A × C2, then ,~(G)= a(AC2) and r(G) = 2 s  + (r(A ) IH t - s ) / 2 ,  where s 

is the number of conjugate classes CIA (a) of A such that CIA (a) b = CIA (a), i.e. 

s = a(AC2) (it is an immediate consequence of [25] Lemma 2.9). 

(2) If G / S ( G ) =  (~,)~-C o , with p prime, then we have a ( G ) =  s .  ( p - 1 ) ,  

where s is the number of conjugacy classes of G fixed by the automorphism 

4J: S(G)--~ S ( G )  defined by ¢,(x) = x g for each x E S(G).  In particular, a ( G )  = 

s, in case p --2. 

LEMMA 1.9. Let V be a vector space over Zp of dimension n and let 

f ~ Autz~ (V)  be such that fP' = 1 for some t ~ N. Then [Cv (f)[ _-> p' ,  with e a 

natural number satisfying e >= n/m >-_ n/p', where m is the degree of the minimal 

polynomial o f f  over Zp. In particular, if p = 2 and o(f)  = 2, then [ Cv(f)[ >- 2 k if 

n =2k,  and ICy(/)l_->2 k÷' if n = 2 k  +1 for some natural number k. 

PROOF. We know that there exist f-invariable subspaces V, . . . . .  Vs of V and 

polynomials q~(x) . . . . .  qs (x) E Zp [x] such that V = V~ (~). • • ~) V~, q, (x) divides 

q,+,(x) for each i - -1  . . . . .  s - 1 ,  q~(x) is the minimal polynomial of f, q~(x)= 

pol. min.(fpv,) and q~(x)q2(x)'. 'q~ (x) is the characteristic polynomial of f. As f 

is a root of the polynomial x p ' -  1 = (x - 1) p', the minimal polynomial pol. min.(f) 

divides (x - 1) p', so m _-< p'. 

Let us consider the p-group G = Hol(V, (f)). We have V, ~ G for each i, 

hence V~ N Z ( G ) ~  1 and therefore I C v , ( f ) l ~ p  for every i. In consequence 

ICv (f) l >-- P~. Besides 

and 

1 =< degr.(q,(x)) <- . - .  =< degr.(q~ (x)) = m <= p' 

degr.(q,) + . . .  + degr.(q~) = n, 

hence n = s .  degr.(q~) = sin, i.e. s >= n/m. 

EXAMPLE. Suppose f ~ Aut(C34) and o(f)  = 3, then I C~(f)] => 3 e, with e => 

4/3, so e _->2 and ICe,(f)l_-> 3 2. 

LEMMA 1.10. Let G be a group with S ( G ) abelian and let x ~ G - S ( G ). Put 

= G/S (G) .  Then r c ( x S ( G ) ) ~ o ( £ ) .  [Cc(x)N S(G)[/fC~(£)I. 
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PROOF. Let Clo(xzj), j = 1 . . . . .  t be the conjugacy classes of elements of G 

which have non-empty intersection with xS(G).  Then t =  ro(xS(G)) and 

1/IC~(2)[ = Z~=t 1/I Ce(xz/) I (cf. [25] Lemma 2.1(ii)). Moreover, o(Y~j)= o(2) 

and Co (xz j )n  S (G)  = Co ( x ) n  S(G), because S(G)  is an abelian group, there- 

fore 

ICo(xz j ) l>=o(2) . lCo(x )nS(G) l  for every ] 

and consequently t => o (£ ) - ICe  (x) n S(G)[[ I Co (x)l. 

Lemma 1.10 is generally used with Lemma 1.9, fixing the possible values of 

r6(xS(G)), then the cardinal of C a ( x ) n  S(G)  is bounded, and if o(JT) is the 

power of a prime number p, the situations that originate from fixing the possible 

orders of Ce (x) n Op (S(G))  ( = Co (x) n S(G))  are now analyzed. 

LEMMA 1.11. Let G be a finite group and let S~ . . . .  , S, be normal sets of G. 

Then 

re S, = Z re ( - 1 )  '+'. 
= t = l  l < = i l < ' " < i t ' < n  = 

PROOF. This result follows immediately from an inductive process over n and 

from the fact that re (S~ U $2) = re (S~)+ re (Sz)- re (S~ N $2). 

LEMMA 1.12. Let G be a group such that S (G)  is abelian. Set 

CJ = G / S ( G ) = C I ~ ( ~ , ) ( J . . .  OClo(~. )  and CI~(~,)={~, . . . . . .  ~,o). 

Then S, = (Co (x ~,) N S(G))  U . . . U ((Co (x ,.,) N S(G))  is a normal set in G and 

r ( G ) = a ( G ) + r e  S, + S ( G ) I -  S, IG/S(G)[ .  

PROOF. Let g be an element of G and set ~ = x~k, then x~ = x~k. z for some 

z E S (G)  and (Co(x0 n S(G))  g = Co(x~z)N S(G)  = Co(x~) n S(G).  There- 

fore S~ is a normal set in G. Besides, if z ~ S ( G ) -  U~=, S~, then z ~ = z b with 

a, b E G - S (G)  if and only if z E C~(ab- ' )O S(G),  so ~/~-' = T and aS(G)  = 

bS(G). Therefore IClo(z)l = I G/S(G)[  and thus we get the desired formula. 

Lemmas 1.11 and 1.12 are generally used to determine r(G), once the value of 

a ( G )  has been fixed. 

LEMMA 1.13. Let G be a .finite group such that S (G)  is not solvable and 

/3 (G)=  r ( G ) - j  with 1 <=j <-11. Then G is isomorphic to one of the following 

groups: As, A6, A7, Es, I~6, A5 x G ,  PSL(2, 7)x  C2, PSL(2, 7), PGL(2, 7), Mg, 
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PGL(2, 9), SL(2, 8), Pr'L(2, 8), PSL(2, 11), PSL(2, 13), PSL(2, 17), PSL(3, 4), Mll, 

Sz(8), (As x (73) ×~ C2 with A5C2 = E5 and C3C2 ='23, M22, PSL(3, 3), and 
PSL(2, 19). 

PROOF. We'll reason in a similar way as in Theorem 3.2 of [25]. 

If S(G) = G, then G is completely reducible, hence G = 

G, × . . .  x G~ × Z(G) with the G~ simple non-abelian groups. Therefore 

5 s. [ Z ( G ) [ - ( s  + [ Z ( G ) [ -  1)= r ( G ) - ~ ( G ) = j  < 11 

and necessarily s = 1 and [Z(G)I  _-<2. Thus either G E{A5 x C2, PSL(2,7) x C2} 

or G is a simple group with r(G) <- 12, hence from [1], G is isomorphic to one of 

the following groups: As, PSL(2,7), A6, PSL(2,11), AT, PSL(2,13), SL(2,8), 

PSL(3,4), M11, Sz(8), PSL(2, 17), Mn, PSL(3,3), PSL(2, 19). 

Now we can suppose S(G)< G, that is, a(G)_-> 1. Further, we deduce from 

Lemma 2.18 of [25] that a(G) _-> 3. If or(G) = 3, then Lemma 2.20 of [25] implies 

that G is isomorphic to one of the following groups: Mg, 1~s, (As x C3)x,  C2. 

If a(G)=4,  then it follows from Lemma 1.8 that G =PGL(2 ,7) .  Suppose 

a(G) _-> 5. We have 3 /3(G)+  a(G)<= 11 from Lemma 3.1 of [25], so fl(G) = I or 
2. If f l ( G ) = 2 ,  then r ( G ) < _ - l l + 2 = 1 3 .  Let L ,¢L2  be the minimal normal 

subgroups of G, then S(G)= L~ x L2. If L1 and L2 are not solvable, then 

re(S(G))>= 1 + re(L*)+ re(L*)+ re(L*)" re(L*) = 1 + 3 + 3 + 3 . 3  = 16, 

but a(G)-_>5 implies re(S(G))<_-13-5 = 8, which is impossible. Thus, L1 ~ -C;  
e 

for some prime p and L2 is non-solvable and isomorphic to A x • • • x A with A 

a non-abelian simple group. Reasoning as above, we now have re(S(G))>= 
1 + 1 + 2 .  re(L*). If e _-->2, then A x A has elements of orders 1, 2, pl, p2, 2p~, 

2p2, p~ p2, where p l ¢  p2 are two odd prime factors of [A [, thus re (L*)_-__ 7, that 
is impossible. Therefore e = 1 and L2= A is a simple group. We have 

2 ( l + r e ( L * ) ) _ - < 1 3 - 5 = 8 ,  so r e ( L * ) < 3  and [{o(g)]gEL*}l<=3. Conse- 

quently L 2 = A s  by Lemma 2.12 of [25]. Besides, L~<=C~(L2). Suppose 

Ce(L2) = L~, then G/L~_<-Aut(Lz)=Es, hence G/S(G)= Cz, and re(L*)>= 
(p' - 1)/2, therefore (p' - 1)/2 _-< 1, and necessarily G = (Ca x A s ) x ,  C2 being 

a(G) = 3, impossible. Thus we can suppose L~ < Ce(Lz) and G / S ( G ) ~  (72. By 

considering the different orders of elements in S(G) = C'p x As, it follows that 

r~(S(G))>=8 and a(G)_-_5. Moreover, if x E Ce(L2)-S(G),  then every ele- 

ment of A5 is centralized by x, so xS(G) has elements of, at least, three different 

orders, hence rc(xS(G))~3 and consequently r(G/S(G))=4 (otherwise, 

a (G) = r6 (xS(G)) + E~=I r~ (x,S(G)) with s _-> 3 implies ot (G)  _-> 3 + 1 + 1 + 1 = 6, 

impossible). If r(G/S(G))=4, then there exists y ~ G - S ( G )  such that 
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re (yS(G)) = 1, hence ICe (Y)I ~ {2, 3, 4, 5} and necessarily S(G)  is solvable, 

impossible. If G / S ( G )  = (£) -~ C3, then a(G)  = 2. re (xS(G))_-> 6, impossible. 

Finally, if G / S ( G )  = (a) ×r (6) -- E3, then Ce (L2) = S(G) (a )  and re (bS(G)) <= 
2, hence [ Co(b)l ~ 2 or 4 and S(G)  is solvable. Thus /3(G)  = 1 and r(G) <- 12. 

Set S(G)  = A × . . .  x A, with A a non-abelian simple group. As a(G)=>5,  we 

have re (S (G)) =< 7, hence I{o (g)[ g E S (G)}I -<- 7 and this implies that e =< 2. If 

e = 2 and pl ~ p2 are two odd prime numbers, divisors of IA I, then S(G)  has 

elements of order 1, 2, pl, p2, 2pl, 2p2, plp2, hence ro (S(G))  = 7 and a ( G )  = 5. 

Moreover, necessarily I{o(g) [ g ~ A *}l = 3, so A = As. We have Ce (S(G))  = 1, 

because f l ( G ) =  1 and also 

S(G)  <~ G <- Aut(S(G))  = Aut(As) - E2 = E5 - ~2 = (I~5 x 1~5) x~ C2, 

being Aut(A5 x As) ~- C2 - C2 = Ds. If G/A~ ~- C2, then r(G) = 2s + (25 - s)/2 
and 2 divides IAsI 2, so s _->2, but s -= 1 (rood 2), hence s _->3 and r (G)  = 6+  11 = 

17, that is impossible. If [ G / S ( G ) I = 4  or G/S(G)~-Ds ,  then there exists 

y ~ G - S (G)  such that re (yS(G)) = 1, hence [Ce (y)[ = 4 and S(G)  is solvable, 

impossible. Thus, necessarily S ( G ) =  A is a non-abelian simple group, f l ( G ) =  

1, C e ( A ) =  1 and A 4 G =<Aut(A). Further, r(G)-< 12 and a(G)_->5. 

If a (G)_-> 7, then re (S(G))-<_ 5, hence [{o(g) [ g ~ A }l -<- 5 and necessarily 

A ~ {As, PSL(2, 7), A6, SL(2, 8)}. We have Aut(As) -~ Es, Aut(A6) -~ PFL(2, 9), 

Aut(PSL(2,7)) = PGL(2,7) and Aut(SL(2,8)) = PFL(2,8), and the possible 

groups that appear here satisfy either r ( G ) > 1 2  or a ( G ) < 7 .  Therefore 

a (G)  ~ {5, 6} and consequently r (G/S(G))  <-_ 7. 

If r (G/S (G) )  = 7 = ~ (G) + 1, then I Ce (x)[ = I Ca (x) l for each x ~ G - S (G)  

and Lemma 2.3 of [25] yields that S(G)  is abelian, impossible. 

If r ( G / S ( G ) ) =  5 or 6, then, at least, there are x, y ~ G -  S (G)  such that 

re (xS(G))  = 1 = re (yS(G)) and ~ does not conjugate with )7 in t~. Now, from an 

inspection of the tuples Ae of the groups with 5 or 6 conjugate classes, we 

deduce from Lemma 2.13 of [25] that S(G)  is solvable, which is impossible. Thus 

we can suppose that G / S ( G )  is isomorphic to one of the following groups: C2, 

C3, ~'3, C4, C2 X C2, D~o and a4. 
If G/S(G)~-  A4, we have c~(G) = re(aS(G))+ re(bS(G))+ re(b-IS(G))<=6 

with o(a)  = 2 and o(/~) = 3, hence re (bS(G)) =< 2, so [Co (b)l = 3 or 6 and S(G)  

is solvable by Lemma 2.13 (cf. [25]). Similarly, the case (~ ~-Dio cannot arise 

here. 

Suppose [ t~ I = 4, then there exists b E G - S (G)  such that re (bS(G)) = 2, 

hence Ab = (8, 8) and G has sectional rank at most 4. Now [8] and Lemmas 1.5 

and 1.6 imply that there is not any group in this case. 
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TABLE 10 

G / S ( G )  G r ( G )  

C~ 

C~ 

2~ 

c ,  

c~ 

C., x ( H  xr C2) 
C s x ( H x ^ C 4 )  = C5 x (Hx , ,  (b)) with h b = h - '  Vh ~ H  

C , x  ( Y x ~ G )  

(?2 x (C~2 x ,  Z3) = (72 x ((x., y., xa, ya) x .  (a, b)) 
with x T =  y~, y7 = x~y~ =y~,  x ~ =  x,, i = 1 , 2  
C~ax^ DC3 = (x,, y,, xa, ya)x ,  ((a) x ,  (b)) with 
x ~ = y , , y ~ = x , y , - - y ~ , x , b = x , , i = l , 2  
C~X,  (C~X:Ca)  = (x . ,  xa)x^ ( ( a ) x l  (b)) with 

b -I -I  
x~,=xa, x ~ = x T ~ x ~ ,  x~ xj ,  x a = x ~  xa 
C 2 × ,  (C~ x:  Ca) = (x., x2) × .  (Ca,, as) x :  (b)) with 

= a 2 - I  -1 b b 
x~,t=x~, x~ 2 x2, xa =X~ x2 , x ~ = x ~ ,  x a = x T ~ x ~  ~ 

C~ ×.  £3 = (x~, x~, x~) ×.  (Ca) ×: (b)) with 
b -IX-1 x~ = x,, x~ = x,, x~= x~'x~' ,  x~= x ; ' ,  x~=~ x~, x~= x~ 

G x ( C ~ x ,  (C~x /G) )  = G x ( ( x , y ) x ,  ( (a )x r (b ) )  
with x" =y ,  y" =xy ,  x b = x ,  yb = x y  
G x (Ci  x ,  (C~ xr G ) )  = G x (ix, y) x ,  (Ca,, a~) x:  (b))) 
with x " ' = x ,  y °~=y ,  x "2=y,  y°2=xy ,  x b = x ,  y b = x y  

( G x C4 x: G 

(C,,  x H ) x , G  = ((x) x H ) x ~  (a)  with x ~ = x - '  
and H ( a )  = H x : ( a )  
Ca x (C5 × H ) x ,  C4 = (72 x (ix) x H ) x ~  (a)  with x ° = x - '  

and H ( a )  = H x / ( a )  

(C5 x H ) x ~  (7, = (ix) × H ) x .  (a)  with x ° = x - '  
C . ( a  2 ) = 1  and h ~ ' = h  V h E H  

X b C a x ( C ~ x . D . ) = C a x ( ( x ) x ~ ( ( a ) x ~ ( b ) ) ) w i t h  x ~ = x  -c, = x  
Ca x (C~ x ,  D.)  = Ca × (ix) x~ (Ca) X~(b))) with x ~ = x, x ~ = x - '  
Ca × (C~x.  O.)  = Ca x ( ( x ) x ,  ( (a)x~(b)))  with x ~ = x, x ~ = x - '  
C . a x . C . = ( a ) x .  (b)  with a ~ = a -  
C3×~ (C, x~ C,) = (x)x~ ((a) x~ <b)) 
with a ~ - '  - '  x b = a  , X ~ = X  , = X  

(C, X C, x G ) x ,  C2 = (<x) x <a) x <b))x, <c) 
w i t h a  ' = a  ' , x " = x - ' , x  ~ = x  
C , x ,  ((C, x C0x ,Ca)  = <x)x ,  (((a) x <b))x, <c)) 
with a" = ab, b" = b, x ° = x - ' ,  x"  = x, x ~ = x 

9 5 6  X ~ 3  

D= x D . ,  

(C~ x ~ G )  x D .  
(C~ x Cu × C~)×, C~ = ((xO x (x~)'x (x3))x, (at ,  as) with 

a - i  
a 2 --I X ~  2 ~ X29 X 3  ~ ~" X 3  x ~ '  = x , ,  x~ '  = xi', x~'  = x ~ ' ,  x ,  = x ,  , 

(C~ x C,) x ,  C~ = ((x,, xa, x,) x <x,)) x ,  (a,,  a=) 
with x~' = x~, x~' = x i ' ,  x~' =x~- ' ,  x~' = x ; ' ,  

C 2 X~t (C4 X C2) = (Xl, X2) Xx ((at) x (a2))  with 
x~' = x,', x~' = x~', xi' = x,, x~ ~ = x~' 

Gx2, x'£, 
C~ x D. .  

r = l S + 5 1 n l  
r = 1 5 + 5 1 H p  

r = 5 . (3+(1  v l -  1)/3) 

r = 20, /3(G) = 4 

r = 2 0 ,  /3(G) = 4 

r = 39, /3(G) = 2 

r = 39, /3(G) = 2 

r = 35, /3(G) = 2 

r = 18, /3(G) = 3 

r = 18, t3(G) = 3 

r = 1 5 , 3 ( G ) = 4  

r = 18+ 15"(I H I - l ) / 4  

r = 16+ 1 0 ( I n l -  1) 

r = 16 + 10(I H I -  1)/4 

r = 1 8 , / 3 ( G ) = 4  
r = 1 8 ,  /3(G) = 4 
r = 1 8 ,  /3(G) = 4 
r = 18, t3(G) = 4 
r = 1 8 ,  ~ ( G )  = 4  

r = 1 8 , 3 ( G ) = 4  

r = 1 8 ,  /3(G) = 4 

r = 2 4 ,  /3(G) = 2 
r = 28, /3(G) = 2 
r = 3 0 , / 3 ( G ) = 2  
r = 3 9 , / 3 ( G ) =  3 

r = 4 8 , / 3 ( G ) =  6 

r = 1 8 ,  ~ ( G ) = 3  

r = 18, ~ ( G ) = 3  
r = 16, /3(G) = 2 



2 1 4  A. V E R A  L O P E Z  A N D  J. V E R A  L O P E Z  Isr. J. Math .  

T A B L E  1 0  (contd.) 

G / S ( G )  G r (G)  

D,o 

A 4  

c~ 

O.  

1). 

D i 4  

Hol  Cs 

C ~ x ~ C 3  

X, 

A~ 

C~ 

(C~ x CT~)x~ C22 = ((x,) x (x=, x~))x~ (at ,  a=) with 
x ?  = x,,  x~' = x i ' ,  x~' = x ; ' ,  x ~  = x~ ' ,  x~'  = x~, x~' = x ; '  
((77 x C ~ ) x .  C~ = ((x.) x (x~, x3))x~ (a . ,  a2) with 
X~ I = Xl ,  X~ 1 = X219 X~'  = X ; ' ,  X~  2 = X l  l, X~ 2 = X2, X~ 2 = X ;  1 

((73 x C'TJ~)x. D,o = ((x) x (y . . . . . .  y.)) x~ ( ( a ) x  t (b))  with  
X a = X, X b = X -1 ,  y~  = y2,  Y~ = y3,  Y~ ~ y4,  Y~ = y~y~y3y4, 

o t, o o 
y~ = y~, y~ = y~y~y3y4, y3 = y~, y4 = y3 

(72 x SL(2, 3) 

r = 51, /3 (G)  = 3 

r = 58, 13(G) = 3 

r = 18, t s ( G )  = 2 

r = 14, 13(G) = 3 

(Cs x H ) x ~ Q .  = ((x) x H ) x ~  (a, b)  with x ° = x -1 ,  

x e = x  and  H Q . = H x t Q ,  

C~ x^/9. = (x, y)  x ( ( a ) x ,  (b) )  

with x"  = y ,  y" = x - ' ,  x ~ = x ,  y~ = y - '  

r = 1 3 + 5 ( [ H  I -  1)/8 

r = 20 ,  I ~ ( G )  = 

C~2×, (CT×tC3) = Ix . . . . . .  x6)×~ ( (a )×t (b ) )  
with x~' = xi+,, x~, = x , - . .  x6, x t  ~ = x,,  x~ = x3, 
X~ = XS, b X b b - -  • X4 ~ Xl " " ' X6, 5 ~ X2~ X6 - -  X4 

with x~ = x~, x~ = x~, x~ = x,x~, x~ = xs, xg = x~, x7, = x.xs, 
b b b b b 

Xl  ~ X I ~  X 2 = X 3 ~  X3 ~'X2X3~ X4 ~ X4~ X ~  X6~ X6 ~ XsX6 

r = 16, / 3 ( 0 ) =  1 

r = 1 6 ,  /3(G)  = 3 

C~ ×,  ~4 = (x,, x:, x3) ×a ((a, ,  a2) ×A ((b) ×~ (c)) 
with a ,  ~ = a2, a~ = a,a2, a~ = a,, a~ = a,a2, b ° = b-'  
b 3 = l ,  c Z = l , a ~ = l , i = l , 2 ,  x ~ ' = x t ,  x ~ l = x ~  I, 
x ?  = x j ' ,  x ,  ~ = x , ' ,  x ~  = x2, x ~  = x ; ' ,  x t  = x~, 

x~ = x , ,  x~ = x , ,  x ~, = x ~ ' ,  x'~ = x ; ' ,  x'~ = x~ '  

r = 14, / 3 ( G ) =  1 

xa  SL(2, 5) = (x,,  x2, x3, x,)  x~ (a, b, c) with  a s = b 3 = c z = 1, 
( a b )  2 = c, a ~ = a, b ° = / , ,  x l  = x~, x~ = x3, x~ = x,, 

x~ = x , x ~ x , x , ,  x t  = x , x~ ,  x~ = x , ,  x~ = x2x~x , ,  x ~, = x , x~  

C~" As  the  only  perfect  ex tens ion  of A s  by C2 s 
which  a d m i t s  ne i ther  c o m p l e m e n t  nor  s u p p l e m e n t  
C ~ ' A s  =(x , ,x2 ,x3 ,x , ,xs ,  c ,d)  with c 3 = 1 = d s, (x . . . . . .  xs)-~ C~, 

( c d ) ~ =  x,, x ;  = x~, x~ = x~, x ;  = x~, x :  = x, ,  x~ = x, ,  
d d X d - -  Xa4 = XlXzX3X4X.% a X5 = X4 X l  = X3s X2 ~ Xl~ 3 - -  X2, 

r = 14, t 3 ( o )  = 2 

r = 14, / 3 ( G ) =  1 

(C~2 × H )  ×~ C6 = ( i x .  yt, x2, yz) × H )  ×~ ( a )  with r = 16 + 8 ( IHI  - 1)/3 
x ? =  yi, y ? =  x~y,, i = 1 , 2 ,  H ( a ) = H × f ( a )  
(C5 × C~ × D)×^C6 = (ix) × (y , z )  × D ) × ~  (a )  with D = 1 or  H, r = 1 4 + ( 1 0 1 D  [ - 4 ) / 3  
x" = x  -~, y" = z ,  z ° = y z ,  D ( a ) = D × f ( a )  
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TABLE 10 (contd.) 

G I S ( G )  G r ( G )  

C2 x ( H  x tC6)  
Hx~,C~2 = H x ,  (a)  with C , ( a  6) = H and 
a, a ~, a ~ acting f.p.f, over H 

r = 1 2 + ( I H I -  1)/3 
r = 1 2 + ( t H  [ -  1)/3 

D,z C ~ x ~ ( C 3 x ~ D s ) = ( x , , x z ) x a ( ( c ) × ~ ( a , b ) )  r = 1 4 ,  /3(G) = 2 
with a 4 = l = b  2, a ~ = a  ~, c ~ = c ,  c" = c  ', 

x~ = x , ,  x~ = x,x2,  x ;  = x~, x ;  = x,x~, x ~, = x , ,  x~ = x~ 

C2 ~ ×~ (C3 ×~ Ds) = (x~, x2) ×~ ((c) × ,  (a, b)) with 
a " = l = b  z, a b = a  -~, c ~ ' = c  -~, c a = c ,  x ~ = x ~ ,  

x~ = x~, x;  = x~, x~ = x,x~, x~ = x~, x~ = x,x2 

C~ ×~ ((73 ×~ Q.)  = Cxi, x:) ×~ ((c) ×~ Ca, b)) with 
C ~ = C  i ,  C b = C ,  a b = a  - I ,  x ~ = x i ,  x 2 = x ~ x 2 ,  

X /  = X2, X~ : ×IX2,  b b X2 Xl  : Xl~ X2 : 

DC~ 

D I s  

C~x~C~ 

C ] x r C ,  

C~ xr Q.  

PSL(2,7) - -  

C, 

Qt6 

6"2 x ( H  xf DC3) 
H × ~  (C~x~ C~)= H x ,  ((a)×~ Cb)) with 
a ~ = a - ' ,  C , ( b  ~) = H and a, b 2 acting f.p.f, over H 
H x ~  (C~×~ C,) = H x ~  ( (a)x~ (b)) with a ~ = a - ' ,  
C , ( a 3 ) =  H, and a, b 2 acting f.p.f, over H 
(C3 x H ) x ~  DC3 = (ix) x H ) x ~  (Ca)xA Cb)) with 
x ~ = x ,  x ~ = x  ', H ( a , b ) = H x t ( a , b )  
(C, x C~ x D ) x ~  DC3 = (Cx) x (x,, x2) x D ) x ,  (Ca) x~ (b)) 
with D = l o r  H , x  " = x , x  b = x  ~ , x ~ = x 2 , x ~ = x , x ~ ,  
x ~=  xt,  x ~ =  xlxz  and DCa, b ) =  D x  t (a ,b )  

SDI6 

r = 14, / 3 ( G ) = 2  

r = 14, /3(G) = 2 

r = 12+ ( I H I -  1)/6 
r =  1 2 + ( I H I -  1)/6 

r = 1 2 + ( I n l -  1)/4 

= 1 2 + ( I n 1 - 1 ) / 4  

r = 1 4 +  5 ( l O ] - l ) 1 3  

C~2 x^  (C23 x tC2 ) = (x, ,  x2, x3, x4) xA ((a, ,  a2) x t  (b))  
with x7 ~ = x., x~ ~ = x2, x~ ~ = x4, x~ ~ = x3x4, x~ = x. ,  
x~ = x,x~, x ~  = x~, x ?  = x,x~,  x ?  = x~, x ~  = x , ,  

b b 
X3 ~ X3~ X4 ~ X3X4 

r = 1 4 ,  f l ( G ) = 2  

C~2 x^ (C] x tC , )  = ix . . . . . .  x,) x ,  ((a~, a~) xt  (b)) r = 13, /3(G) = 1 
with a~ = a2, a# = a~ ' ,  x7 ' = xz, x ?  = x~x2, x~' = x3, x~,, = x, ,  x7 ~ = x~, 
x ?  = x~, x ?  = x , ,  x ~  = x~x, ,  x ~ =  x~, x~ = x,, x~ = x,, x:  = x,x~ 

(C3 x H ) x ~  Q,6 = (Cx) x H ) x ~  Ca, b) with x ° = x - ' ,  
x b = x, and HQ~6 = H x t O ~ 6  

x, ,  SD,6 = (Xl, y l ,  x2, y2) ~X~h (a, b) wi th  x~ = y~, y7 = x,y,, 
x ~ = x , ,  y ~ = x ,  y7 t , i = l , 2 , a ~ = l = b  2, a b = a  3 
C-~ x~2SD,6 = Cx, , x~ ,x3 ,x , ) x^  Ca, b)  with x7 = x2, x ;  = x~, 

a -1 b x2b j¢4~ b -1 b X~-'~"X4, X 4 ~ X [  , X I ~ X I ~  3 - - X 3  , X 4 ~ X 2  

r = 1 2  + 3" (l n l  - 1 ) / 1 6  

r = 1 8 ,  t 3 ( G ) = 4  

r = 18, / 3 ( G ) =  1 
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TABLE 10 (contd.) 

G / S ( G )  G r (G)  

SL(2, 3) (C~ × H)×~  SL(2, 3 ) =  ((x~, x~)× H)×~ ((a, b)×~ (c)) r = 12 + (I H I -  1)/6 
with a" = b ,  b ~ =ab,  x~,=x~ = x ~ ,  i = 1,2, xT=xz ,  
x ~ = x~ xz, and H -  SL(2, 3) = H ×t SL(2, 3) 

C,~xtC~ C]x~ (C~xtC~)  = (x , ,x~,x~)x~ (a ,b)  with 
b - I  

x r  = x~, x~  = x~, x~ = x , x~  = x"~, x~  = x , ,  x~ = x , x ~  x~ 

r = 13, /3(G)= 1 

There  are no groups G such that G / S ( G )  is isomorphic to one of the following list: D~,  D~,  
C~x:C~, C,.~x~C,, C .×:C~.  

A,, C '~x~A6=ix~,xz ,  x~,x4)x~,(a,b) with a S = b ~ = l ,  r = 1 2 ,  / 3 ( O ) = 1  
(ab) ~ = (a- 'b)"  = l, x7 = x,, x ;  = x ,x , ,  x ;  = x:x, ,  
xZ = x~x , ,  x~  = x , x~ ,  x~  = x~x~, x~  = x~x , ,  x ~, = x , x ~ x ,  

~5 

C~x~, ]~s = (x, ,  xz, x3, x,) ×A ( a, b, d)  with 
a s = b ~ = (ba)  ~ = 1 = d ~, (a~ba~)'~a ~ = 1, x7 = xz, 
x~ = x~, x ;  = x , ,  x~ = x , x ~ x , ,  x~  = x , x~ ,  x~  = x , ,  
X b - -  d d d d 

3 - -  X 2 X 3 X 4 ~  X b ~ X l X 3 s  X l  ~ Xl~ X 2  ~ X2s X 3  = X2X3~ X 4  ~ X l X 2 X 4  

r = 12, / 3 ( G ) =  1 
r = 12, / 3 ( G ) =  1 
r = 12, /3(G) = 1 

C~ 

G 

C, x Q  

(C,3 x H)×~ Cs = ((x) x H ) x ~  (a)  r = 14 + 13"(I HI  - 1)/8 
with x ° = x s, and H i a )  = H x t ( a )  
(C3 x H ) x ~  Cs = (ix) x H ) x ~  (a)  r = 12+ 3 - ( t i l l -  1)/8 
with x ° = x - ' ,  and H ( a )  = H x t i a )  

= ) a = l = b , x "  2 b X r 14, / 3 ( G ) = 2  Csx~M,6 ( x ) x ~ ( ( a  x ~ ( b ) ) w i t h  " 2 = x , x  = = 
CsxAM~6 = (x)xA ( ( a ) x ~  (b ) )  w i t h  x ~ = x 2, x b = xT' ,  r = 14, f l ( G ) =  2 

CsxA (C4 xA C4) = (x)xA ((a)xA (b)) r = 14, f l (G)  = 2 
with a b = a  - ~ , x  ° = x , x  o = x  ~ 
Csx~ ((C4 x C2)xA C2) = (x )x~  (((a) x (b))x~ (c)) r = 14, /3(G) = 2 
with a ~ =ab,  b ~ = b ,  x ~ = x  2, x ~ = x ,  x b = x  
( Q  x C])x~ (C4x Q ) =  ( i x ) x  (yl, y2))x~ ((a) x i b ) )  r = 18, f l ( G ) = 2  
with x ~ = x z, x b = x, y~ = y2, y~ = y~-~, y~ = y [ ' ,  y~ = y ~  

If r ( G / S ( G ) ) = 8  and I G / S ( G ) I > 8 ,  then G / S ( G ) =  C~2xtCs and we have: 
C~2xtC5 P x t C s  with P satisfying P/C~ ~ C~2, Z ( P ) =  P ' =  C~2 r = 14 , /3 (G)  = 1 

If r ( G / S ( G ) )  = 9,  t h e n  G / S ( G )  ~ C9 and we have: 
C~ ( C ~ x  Y ) x ~ C ~ = ( i x ,  y ) x  Y)x~ (a)  with 

x ° = y ,  y° = x y ,  Y i a ) =  Y x t ( a )  

r = 1 2 + 4 . ( [ Y 1 - 1 ) / 9  

If r ( G / $ ( G ) ) =  10, then G / S ( G ) ~ { M , 6 ,  C~2x~ E3, C~xA C6} and we have: 
M,6 C~x~M~6=(x l ,  x2)xA (a ,b)  with a~= l = b  2, r = 1 3 ,  f l ( G ) = l  

a ~ = a s ,  x," = x2 ,  x~  = x~,, x ~, = x , ,  x~  = x ~ '  

x~ ,Y.3 P~ x~ .~,3 = Pt x~ (a, b) with a 3 -- b 2 = 1, a b = a - ' ,  r = 12, /3(G) = 1 

P~ = ~ xA C~2 = (z,,  z~, a~, a2) x~ (bt, b2) with 
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TABLE l0 (contd.) 

G/S(G) G r(G) 

z~l= z,, i,j = 1,2, a~, = alzl, a~ 2 = alz2, a~' = a2z2, 
a~ 2 = azz~z2 and bY = btb2, b~ = b~, b~ = bz, b~ = b~, 
z~ = z~, z~ = z,z~, a~ = a,a~, a~ = a,, z~ = z,z2, z~ = z2, 
a~= a2, a~= a, (P, is a 2-group of type PSL(3,4)) 

C~2×AC~ P, ×~C6 = P, ×~ (ab) with P~ as above, and r = 12, /3(G) = 1 
z~= z2, z~= z,z2, a~= a~a2, a~= a~, bY= btb~, b~= bt, 
z~= z,, z~= z2, a~= bib2, a~= bl, b~= a2, b~= ala2 
P2 xx C6 = P2×~ (aft) with P2 = (724. C~ = (a, b).(c, d), 
[a, b] = [c, d] = 1, c 2 = b 2, d 2 = a2b 2, [a, c] = a 2, 
[a, d] = [b, c] = d 2, [b, d] = b 2 and (76 = (a/3) with relations 
a" =b, b ~ =a-tb i, c ~ =d, d ~ =c-ld -I, 
a ~ =cd, b a=c -~, c ~=b-',  d °=ab 
(Pz is a 2-group of type PSU(3, 4)) 

r = 12, t3(G) = 1 

If (~ = ( a ) x  t </~)~-E3, then L e m m a s  2.4 and 2.13 of  [25] yield ro(aS(G))>=3 

and re ( b S ( G ) )  => 4 respectively, impossible. 

So then, ei ther  G / S ( G ) =  C3 or G / S ( G ) =  C2 with a ( G ) E { 5 , 6 }  and r(G)<= 

12. 

If G / S ( G ) =  ( /~)= C3, then necessarily ro ( b S ( G ) ) =  3 = re ( b - I S ( G ) ) ,  hence 

t~ ( G ) =  6 and re ( A ) =  6. i f l { o ( g )  l g  E A}I<= 5, then A is i somorphic  to one  of 

the following groups:  As, A6, PSL(2, 7), SL(2, 8), so G = PFL(2,  8) (a  (G)  = 6). 

O n  the o ther  hand,  if [ {o (g ) [g  E A} I = 6, then r ( G ) =  11 or  12 and r e ( A ) =  6 

implies that  " a l - e a 2  iff o ( a O = o ( a 2 ) "  for  every  a ~ , a 2 E A .  Let  s be the 

number  of conjugate  classes of A fixed by conjugat ion  of  b. Then  6 = a ( G ) =  

s • 2 implies s = 3 and 

r ( A  ) = 3 + (to ( A  ) - 3). 3 = 12, 

hence  A E {M22, PSL(3, 3), PSL(2, 19)} which is impossible. 

Finally, we consider  only the case G / S ( G ) = C 2 .  Then  r ( G ) =  

2s + ( r ( A  ) - s ) / 2  with s = a ( G ) ,  and r ( A  ) =  s + (re ( A  ) -  s ) .  2 = s + ( 6 - s ) .  2. 

If s = 6, then r ( A ) =  6 and A = PSL(2,7),  impossible. Thus  we have s = 5 and 

r ( A )  = 7, hence  ei ther  G - PSL(2, 9) (a  (G)  = 5) or  G -~ E6 (a  ( G )  = 5). 

LEMMA 1.14. Let  G be a non-nilpotent group with S ( G )  abelian and satisfy- 

ing the conditions or(G) = 10 and r( G / S ( G ) ) <= 10. Then G is isomorphic to one 

group o f  Table 10. 

PROOF. The  reasonings are similar to the ones fol lowed in L e m m a  4.2 of  [25] 

for a(G)_-<9,  and for  that  reason we don ' t  repeat  them here.  
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LEMMA 1.15. Let G be a non-nilpotent group with S ( G )  solvable. I f  a ( G ) =  

10 and r ( G / S ( G ) )  = 11, then G is isomorphic to one of the following groups: 

(1) H X ~ C n  (r = 11 + ( I H I - 1 ) / l l ) ,  

(2) Yx~O2 (r = 11+(I  Y I -  1)/27), 

(3) H x , 0 3 2  (r = 11 + ( I H I -  1)/32). 

PROOF. Let 's assume r ( G / S ( G ) ) = l l .  Then I C e ( £ ) I = I C ~ ( x ) t  for every 

x ~ G -  S (G) ,  where t~ = G / S ( G ) ,  and the result follows immediately from 

Lemma 2.3 (cf. [25]) observing the tuples A~ for r((~) = 11 from Table 3 of [25]. 

LEMMA 1.16. Let G be a nilpotent group such that a(G)=<10.  Then G is 

isomorphic to one of the following groups: 

Abelian: 1, C4, C8, C2xC4, C9, C4xC~, C12,  (?2o, and Y =  
C e  i I t s 2 X Cp~ X . .  • X Cp,. 

Non-abelian: Ds, Qs, Q~, Q2, Ca x D8, (?3 x Qs, C2 x Da, C2 x Qs, C4xxC4 = 

( a ) x ~ ( b )  with a b = a -l, (C4x C2)x,, C2=((a)  x (b))x~,(c) with a c = ab, b c = 

b, (C4 xC2 )x ,2CE=( (a )x (b ) ) xx~ (c )  with a t = a ,  bC=a2b, Dr6, SD~6, Qt6, 

Dl6 x C2, SD16 x C2, Q16 x C2, (C8 x C2)x,  C2 = ( ( a ) x  (b))x~ (c) with a c = a-lb, 

b" = b, Mr6, (Cs x C2)" C4 = ((a) x (b}). (c) with c 2 = a 4, [b, c] = 1, a c = a-lb, 

CsxA, C4=(a )x~ , (b )  with a b = a  -1, CsxA2C4=(a)x,~(b)  with a b = a  3, 

a b a~ = ala3, a~ = a2a4, C~2xxC2=(al, az, a3, a4)xA(b) with a t = a t ,  2=a2 ,  

2 a ~ b ~ -1 ((?4 x (?4) • (?4 = C 4 x ~ C 2 = ( ( a ) x ( b ) ) x ~ ( c )  with = a  -1, = b  , 1 
((a) x (b))l" (c) with c 2 = a 2, a ~ = a -1, b" = b -1, (C 2 x G)x~,  (?2 = 

((al, aE)x(a3))x~,(b) with a t = a ,  a~=ala2,  a ~ = a ;  1, ( C ] x C 4 ) ' G  = 

((al, a2) x (a3)) '(b) with a~= at, a~= ataz, a~= a;  l, b 2= a3,2 (C]xC4)x ,~C2 = 

((at, a2)x(a3))x~,(b)  with a~=at ,  a b2 = ala2, a~= alaa,2 C~x,~C2= 

( ( a ) x ( b ) ) x ~ ( c )  with a ~ = a -1, b ~ = a2b -1, (C4x (74)2" (?4 = ( ( a ) x ( b ) ) 2 . ( c )  

with a ~ = a -1, b ~ = a2b -1, c2=(ab~ ,  Hol Cs, D32, SD32, Q32, (Csxx C2)" C4 = 

( ( a ) x , ( b ) ) . ( c )  with a ~ = a  ~, aC=ba,  b ' = b ,  c 2 = a  4, (Csx~C2)x ,  C2= 

( (a)xx  (b ) )x ,  (c) with a ~ = a s , a ~ = ba, b ~ = b, C]x^ C 4 = ( a , b , c ) x a  (d) with 

relations a a = a, b ~ = ab, c a = abc. 

PROOF. If G is abelian, it is immediate. On the other hand, in case G is 

non-abelian, set G = Pt × " "  x P, with the P~ Sylow p~-subgroups of G. Then we 

have S ( G ) = I ' ~ ( Z ( P t ) ) x . "  x l)I(Z(P,)).  If I GI is divisible by at least two 

prime numbers, it follows easily that G ~- C3 x D8 of G = (?3 × 08. So we can 

suppose that G is a p-group. If p ~  2, then necessarily p = 3 and G ~- Q1 or 

G-~  Q2. Suppose that G is a 2-group. We have r(G/S(G))<= a ( G ) + l  = 11, 

hence (~ = G / S ( G )  is isomorphic to one of the following groups: C2, (?4, C~, Ds, 
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Qs, SD,6, 0,6, Dl6, Ca, C2x C4, C2 3, C2 X D8, (72 x Q8, C4x;, G, (C4x C2)xA, C2, 
C8~(A C2, (C4x C2) XA 2 C2, 932, 032, 5D32, 2SF6a~, 2SF6a2, 25FTal, 25FTa2, 2SFra3. 

If G/S(G) is a cyclic group, then G is abelian, because S(G)<= Z(G), which 
is impossible. 

If G/S(G)~-C2,, then a(G)=E~=Ir~(d~S(G)), so there exists i such that 

r~ (d,S(G))_-__ 3, consequently 3 _>- 2. [S(G)[/4, hence [S(G)I--< 6, and either 

[ S(G)[  = 2, hence G ~ {D8, Q8}, or [ S(G)I = 4 and G is isomorphic to one of the 

following groups: C2 x Ds, (?2 x 08, C, x ,  C4, (6"4 x (72) x~, Q .  

If G/S(G)~-198, then 

a (G) = I S(G)I + rG (a 2S(G)) + r~ (bS(G)) + ra (abS(G)) and t S(G)I ~ {2, 4}. 

If IS(G)] = 2, then G is isomorphic to one of the following groups: D16, SD,6, 
Q,6, M,6, (C4xf2)xx2C2. If I S ( G ) I = 4 ,  then G/S(G)=Ds  with S ( G ) =  

[ I I ( Z ( G ) ) =  C~. Besides, there exists b E G -  S(G) such that l Ca(b)l = 8, 
because a(G)<= 10, so Z(G)= S(G) and r(G)<= 10+4  = 14. Therefore 

I G/G'I = 8 and consequently G is one of the ten groups of the first branch of the 
family F3 (the second branch satisfies I G/G'I= 24). 

Suppose G/S(G) = Q8, then a (G) = 31S(a)l + ro (a2S(G)), so I S(G)I = 2, 
impossible. 

Suppose G/S(G)E {016, 5D16, 016} and let ~ be an element of order 8 in 
G/S(G), then 21C~ ( a ) n  S(G)I = 2. I S(G)I<-_ 1 0 -  4, so I S(G)I  = 2 and r(G)<- 
12. Thus G ~ {932, 5D32, Q32}. 

In other cases we have I S ( G ) I = 4  for IG/S(G)I<-_16 and I s ( a ) l = 2  if 

I G/S(G)I = 32, as follows from a simple inspection of the tuples Ao and of the 
fact that a(G) <- 10. Therefore r(G) <- 14, I G/G'[-<23 and in these cases G is a 

stem group. Further, either G has order 32 and is in one of the families F~, 

i = 2, 3, 4, 6, 7, or G is a stem group of order 64 of the families F22 or Fz3, being 

for these groups r(G)= 13, Z(G) = S(G)= (?2 and a(G)= 11, impossible. 

THEOREM 1.17. G ~ ~11 if and only if G is one of the following groups: M22, 
PSL(3, 3), PSL(2, 19), C37 x: C6, C~ ×: Q16, C~, ×: SL(2, 3), C 4 x~ As, 

C~3xt(Cs×~ C4), C~9x/5L(2,5), C~×aA6, ~,o)5 , ~2), C~2x~ ~5, P, xA F~3, P,×a C6, 
P2x~ca, ~xf(Csx~ca),  C~x~ca, C~×~(C.×:Q), Q×~,Ds, Q×~D~, 
Q×~0~, Q×SL(2,3)} U 2T. U {25F~a, 11<-i_-<3} U {25F~c, 11_-<i<=2} U 
{25 r~ a,, 2T~ a~} U { C~ × ~ Q~, ( Q  x C9) × r Q,  C~ ×: .Q}. 

PROOF. If is an immediate consequence from Theorem 2.17 [25], Lemma 

2.18 [25], Lemma 2.19 [25], Lemma 2.20 [25], Theorem 3.2 [25], Lemma 4.1 [25], 
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Lemma 4.2 [25], L e m m a  4.5 [25], L e m m a  4.8 [25], L e m m a  4.11 [25], L e m m a  4.14 

[25], and Lemmas  1.8, 1.13, 1.14, 1.15 and 1.16. 

COROLLARY 1.18. r (G)  = 12 iff G is isomorphic to one of the groups listed in 

Table 1. 

COROLLARY 1.19. (1) r (G)  = 13 and [3 (G)  > 1 iff G is isomorphic to one of the 

groups listed in Table 2(i). 

(2) r ( G ) =  13, /3(G) = 1 and 0=<a(G)=<4  iff G is isomorphic to one of the 

group listed in Table 2(ii). 

(3) r ( G ) =  13 , /3(G)  = 1, 5 < a(  G)<= 10 and S( G)  is solvable iff G is isomor- 

phic to one of the group listed in Table 2(iii). 

COROLLARY 1.26. (1) There are no groups satisfying r( G ) = 20 and [3 ( G ) > 8. 

(2) r ( G ) = 2 0 ,  /3(G)_-<8 and 0_-<a(G)<=4 iff G is isomorphic to one of the 

groups listed in Table 9(ii). 

(3) r (G)  = 20, [3(G) <= 8, 5 <= a ( G )  <- 1 and S ( G )  is solvable i f fG is isomorphic 

to one of the group listed in Table 9(iii). 

COROLLARY 1.27. Set n E N ,  n _->21. Then r (G)  = n and [3(G) = n - a with 

l=<a-<_l l ,  if and only if G~{FfI.~, F[~.2, F/3.3, F~,.4, F;,.5, F/6.6, F~.7, F[~.8} with 

tl = log2 n, t2 = log3(2n - 3), t3 = (log2(3n - 8))/2, t4 = logs(4n - 15), t5 = 

log7(6n - 35), t6 = (log2(7n - 48))/3, t7 = (log3(8n - 63))/2, t~ = logH(10n - 99), 

and where F~.i denote F~ if t is a natural number, and is otherwise dropped from the 

list. 

PROOF. It follows from Theorem 4.3 [25], Theorem 4.6 [25], Theorem 4.9 

[25], Theorem 4.12 [25], Theorem 4.15 [25] and Theorem 1.17. 
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